
Wythof's Nim 

An analysis of a simple two-person game can lead into 
fascinating corners of number theory. We begin with a charming, little- 
known game played on a chessboard with a single queen. Before we are 
through, we shall have examined a remarkable pair of number se- 
quences that are intimately connected with the golden ratio and general- 
ized Fibonacci sequences. 

The game, which has no traditional name, was invented about 1960 
by Rufus P. Isaacs, a mathematician at Johns Hopkins University. It is 
described briefly (without reference to chess) in Chapter 6 of the 1962 
English translation of The Theory of Graphs and Its Applications, a book 
in French by Claude Berge. (We met Berge in the previous chapter as a 
member of the Oulipo.) Let's call the game "Corner the Lady." 

Player A puts the queen on any cell in the top row or in the column 
farthest to the right of the board; the cells appear in gray in Figure 48. 
The queen moves in the usual way but only west, south or southwest. 
Player B moves first, then the players alternate moves. The player who 
gets the queen to the starred cell at the lower left corner is the winner. 

No draw is possible, so that A or B is sure to win if both sides play 
rationally. It is easy to program an HP-97 printing calculator or the 
HP-67 pocket calculator to play a perfect game. Indeed, a magnetic card 
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Figure 48 
The cornering game of Rufus P. Isaacs 

supplied with Hewlett-Packard's book HP-67/HP-97 Games Pac I pro- 
vides just such a program. 

Isaacs constructed a winning strategy for cornering the queen on 
boards of unbounded size by starting at the starred cell and working 
backward. If the queen is in the row, column or diagonal containing the 
star, the person who has the move can win at once. Mark these cells with 
three straight lines as is shown in part A of Figure 49. It is clear that the 
two shaded cells are "safe," in the sense that if you occupy either one, 
your opponent is forced to move to a cell that enables you to win on the 
next move. 

Part B of the illustration shows the next step of our recursive analy- 
sis. Add six more lines to mark all the rows, columns and diagonals 
containing the two previously discovered safe cells. This procedure 
allows us to shade two more safe cells as shown. If you occupy either 
one, your opponent is forced to move, so that on your next move you can 
either win at once or move to the pair of safe cells nearer the star. 

Repeating this procedure, as is shown in part C of the illustration, 
completes the analysis of the chessboard by finding a third pair of safe 
cells. It is now clear that Player A can always win by placing the queen 
on the shaded cell in either the top row or the column farthest to the 
right. His strategy thereafter is simply to move to a safe cell, which he 
can always do. If A fails to place the queen on a safe cell, B can always 
win by the same strategy. Note that winning moves are not necessarily 
unique. There are times when the player with the win has two choices; 
one may delay the win, the other may hasten it. 

Our recursive analysis extends to rectangular matrixes of any size or 
shape. In part D of the illustration, a square with 25 squares on a side is 
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Figure 49 (A, B, C) A recursive analysis of "Comer the Lady" (D) The first 
nine pairs of safe cells 



shown with all the safe cells shaded. Note that they are paired symmet- 
rically with respect to the main diagonal and lie almost on two lines that 
fan outward to infinity. Their locations along those lines seem to be 
curiously irregular. Are there formulas by which we can calculate their 
positions nonrecursively? 

Before answering let us turn to an old counter take-away game said 
to have been played in China under the name tsyan-shidzi, which means 
"choosing stones." The game was reinvented by the Dutch mathemati- 
cian W. A. Wythoff, who published an analysis of it in 1907. In Western 
mathematics it is known as "Wythoff's Nim." 

The game is played with two piles of counters, each pile containing 
an arbitrary number of counters. As in Nim, a move consists in taking 
any number of counters from either pile. At least one counter must be 
taken. If a player wishes, he may remove an entire pile. A player may 
take from both piles (which he may not in Nim), provided that he takes 
the same number of counters from each pile. The player who takes the 
last counter wins. If both piles have the same number of counters, the 
next player wins at once by taking both piles. For that reason the game is 
trivial if it starts with equal piles. 

We are ready for our first surprise. Wythoff's Nim is isomorphic with 
the Queen-Cornering game! When Isaacs invented the game, he did not 
know about Wythoff's Nim, and he was amazed to learn later that his 
game had been solved as early as 1907. The isomorphism is easy to see. 
As is shown in part D of Figure 49, we number the 25 columns along the 
x coordinate axis, starting with 0; the rows along the y coordinate axis 
are numbered the same way. Each cell can now be given an x/y number. 
These numbers correspond to the number of counters in piles x and y. 
When the queen moves west, pile x is diminished. When the queen 
moves south, pile y is diminished. When it moves diagonally southwest, 
both piles are diminished by the same amount. Moving the queen to cell 
010 is equivalent to reducing both piles to 0. 

The strategy of winning Wythoff's Nim is to reduce the piles to a 
number pair that corresponds to the number pair of a safe cell in the 
Queen game. If the starting pile numbers are safe, the first player loses. 
He is certain to leave an unsafe pair of piles, which his opponent can 
always reduce to a safe pair on his next move. If the game begins with 
unsafe numbers, the first player can always win by reducing the piles to a 
safe pair and continuing to play to safe pairs. 

The order of the two numbers in a safe pair is not important. This 
condition corresponds to the symmetry of any two cells on the chess- 
board with respect to the main diagonal: they have the same coordinate 
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numbers, one pair being the reverse order of the other. Let us take the 
safe pairs in sequence, starting with the pair nearest 010, and arrange 
them in a row with each smaller number above its partner, as in Figure 
50. Above the pairs write their "position numbers." The top numbers of 
the safe pairs form a sequence we shall call A. The bottom numbers form 
a sequence we shall call B. 

These two sequences, each one strictly increasing, have so many 
remarkable properties that dozens of technical papers have been written 
about them. Note that each B number is the sum of its A number and its 
position number. If we add an A number to its B number, the sum is an A 
number that appears in the A sequence at a position number equal to B. 
(An example is 8 + 13 = 2 1. The 13th number of the A sequence is 2 1 .) 

We have seen how the two sequences are obtained geometrically by 
drawing lines on the chessboard and shading cells according to a recur- 
sive algorithm. Can we generate the sequences by a recursive algorithm 
that is purely numerical? 

We can. Start with 1 as the top number of the first safe pair. Add this 
to its position number to obtain 2 as the bottom number. The top 
number of the next pair is the smallest positive integer not previously 
used. It is 3. Below it goes 5, the sum of 3 and its position number. For 
the top of the third pair write again the smallest positive integer not yet 
used. It is 4. Below it goes 7, the sum of 4 and 3. Continuing in this way 
will generate series A and B. 

There is a bonus. We have discovered one of the most unusual 
properties of the safe pairs. It is obvious from our procedure that every 
positive integer must appear once and only once somewhere in the two 
sequences. 

Is there a way to generate the two sequences nonrecursively? Yes. 
Wythoff was the first to discover that the numbers in sequence A are 
simply multiples of the golden ratio rounded down to integers! (He 
wrote that he pulled this discovery "out of a hat.") 

The golden ratio, as most readers of this book are aware, is one of the 
most famous of all irrational numbers. Like pi it has a way of appearing 
in unlikely places. Ancient Greek mathematicians called it the "extreme 
and mean ratio" for the following reason. Divide a line segment into 

Figure 50 The first 15 safe pairs in Wythof f s  Nim 
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parts A and B in such a way that the ratio of length A to length B is the 
same as the ratio of the entire line to A. You have divided the line into a 
golden ratio. Because this has been widely thought to be the most 
pleasing way to divide a line, the golden ratio has provoked a bulky 
literature (much of it crankish) about the use of the ratio in art and 
architecture. 

We can calculate the golden ratio by assigning a length of 1 to line 
segment B. Our method of dividing the line is expressed by (A + 1)/A = 
All, a simple quadratic equation that produces for A a positive value of 
(1 + &)/2 = 1.61803398 . . . , the golden ratio. Its reciprocal is 
0.61803398. . . . It is the only positive number that becomes its own 
reciprocal when 1 is taken from it and that becomes its own square when 
1 is added to it. Its negative reciprocal has the same properties. In 
Britain the golden ratio is usually signified by the Greek letter z (tau). I 
shall follow the American practice of calling it 4 (phi). 

The numbers in sequence A are given by the formula [ n 4 ] ,  where n  is 
the position number and the brackets signify discarding the fractional 
part. B numbers can be obtained by adding A numbers to their position 
numbers, but it turns out that they are rounded-down multiples of the 
square of phi. The formula for sequence B, therefore, is [ M $ ~ ] .  The fact 
that every positive integer appears once and only once among the safe 
pairs can be expressed by the following remarkable theorem: The set of 
integers that lie between successive multiples of phi and between suc- 
cessive multiples of phi squared is precisely the set of natural numbers. 

Two sequences of increasing positive integers that together contain 
every positive integer just once are called "complementary." Phi is not 
the only irrational number that generates such sequences, although it is 
the only one that gives the safe pairs of Wythoff's Nim. In 1926 Sam 
Beatty, a Canadian mathematician, published his astounding discovery 
that any positive irrational number generates complementary 
sequences. 

Let k  be the irrational number, with k  greater than 1. Sequence A 
consists of multiples of k ,  rounded down, or [ n k ] ,  where n  is the position 
number and the brackets indicate discarding the fraction. Sequence B 
consists of rounded-down multiples of k / ( k  - I), or [ n k / ( k  - I)]. Com- 
plementary sequences produced in this way are called Beatty sequences. 
If k  is phi, the second formula gives rounded-down multiples of 1.618 + 
/0.618+ = 2.618+, which, owing to the whimsical nature of phi, is the 
square of phi. Readers might like to convince themselves that Beatty's 
formulas do indeed produce complementary sequences by letting k  = a pi, e or any other irrational, and that rational values for k  fail to 
produce such sequences. 
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Whenever the golden ratio appears, it is a good bet that Fibonacci 
numbers lurk nearby. The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13, 21, 
34 . . . , in which each number after the first two is the sum of the two 
preceding numbers. A general Fibonacci sequence is defined in the 
same way, except that it can begin with any pair of numbers. A property 
of every Fibonacci sequence of positive integers is that the ratio of 
adjacent terms gets closer and closer to phi, approaching the golden 
ratio as a limit. 

If we partition the primary Fibonacci sequence into pairs, 112, 315, 
811 3 , 2  1/34 . . . , it can be shown that every Fibonacci pair is a safe pair 
in Wythoff's Nim. The first such pair not in this sequence is 417. If we 
start another Fibonacci sequence with 417, however, and partition it 417, 
11/18,29/47 . . . , all these pairs are also safe in Wythoff's Nim. Indeed, 
these pairs belong to a Fibonacci sequence of what are called Lucas 
numbers that begins 2, 1, 3, 4, 7, 11. . . . 

Imagine that we go through the infinite sequence of safe pairs (in the 
manner of Eratosthenes' sieve for sifting out primes) and cross out the 
infinite set of all safe pairs that are pairs in the Fibonacci sequence. The 
smallest pair that is not crossed out is 417. We can now cross out a 
second infinite set of safe pairs, starting with 417, that are pairs in the 
Lucas sequence. An infinite number of safe pairs, of which the lowest is 
now 6/10, remain. This pair too begins another infinite Fibonacci se- 
quence, all of whose pairs are safe. The process continues forever. 
Robert Silber, a mathematician at North Carolina State University, calls 
a safe pair "primitive" if it is the first safe pair that generates a Fibonacci 
sequence. He proves that there are an infinite number of primitive safe 
pairs. Since every positive integer appears exactly once among the safe 
pairs, Silber concludes that there is an infinite sequence of Fibonacci 
sequences that exactly covers the set of natural numbers. 

Take the primitive pairs 112,417, 6/10, 9/15 . . . in order and write 
down their position numbers, 1, 3, 4, 6. . . . Does this sequence look 
familiar? As Silber shows, it is none other than sequence A.  In other 
words, a safe pair is primitive if and only if its position number is r. 
number in sequence A.  

Suppose you are playing Wythoff's game with a very large number of 
counters or on a chessboard of enormous size. What is the best way to 
determine whether a position is safe or unsafe, and how do you play 
perfectly if you have the win? 

You can, of course, use the phi formulas to write out a sufficiently 
large chart of safe pairs, but this is hard to do without a calculator. Is 
there a simpler way comparable to the technique of playing perfect Nim 
by writing the pile numbers in binary notation? Yes, there is, but it uses a 
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more eccentric type of number representation called Fibonacci notation 
that has been intensively studied by Silber and his colleague Ralph 
Gellar and also by other mathematicians such as Leonard Carlitz of Duke 
University. 

Write the Fibonacci sequence from right to left as is shown in Figure 
5 1. Above it number the positions from right to left. With the aid of this 
chart we can express any positive integer in a unique way as the sum of 
Fibonacci numbers. Suppose we want to write 17 in Fibonacci notation. 
Find the largest Fibonacci number that is not greater than 17 (it is 13) 
and put a 1 below it. When we move to the right, we find the next 
number that, added to 13, gives a sum that does not exceed 17. It is 3, 
and so a 1 goes below 3. When we move to the right again, the next 
number that gets a 1 is the 1 in the second position. The unused Fibon- 
acci numbers get 0's. 

The result is 100 10 10, a unique representation of 17. To translate it 
back to decimal notation sum the Fibonacci numbers indicated by the 
positions of the 1's: 13 + 3 + 1 = 17. The 1 farthest to the right in the 
Fibonacci sequence is never used, so that all numbers in Fibonacci 
notation end in 0. It is also easy to see there are never two adjacent 1's. If 
there were, they would have a sum equal to the next Fibonacci number 
on the left, and our rules would give that number a 1 and give 0's to the 
original pair of adjacent 1's. 

In Fibonacci notation the sum of a safe pair is the B number with 0 
appended. From this it follows that the Fibonacci sequence is obtained 
by starting with 10 and adding 0's: 10, 100, 1000, 10000. . . . The same 
procedure gives any Fibonacci sequence generated by a primitive pair. 
For example, the Lucas sequence starting with 417 is 1010, 10100, 
101000, 1010000. . . . 

Every A number in Fibonacci notation has the 1 farthest to the right 
at an even position from the right. Every B number is obtained by adding 
0 to the right of its A partner. Therefore every B number has the 1 
farthest to the right in an odd position. Since every counting number is 
either an A number or a B number, we have a simple way of deciding 

Figure 51 Fibonacci notation for 17 
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whether a given position in Wythoff's Nim is safe or unsafe. Write the 
two numbers in Fibonacci notation. If the smaller one is an A number, 
and if adding 0 produces the other number, the position is safe; other- 
wise it is unsafe. 

An example of the method is 8/13 = 100000/1000000. The 1 in 
100000 is at position 6, an even position, so that 100000 is an A number. 
Adding 0 produces 1000000 = 13, the partner of 8. We know that 8/ 13 is 
safe. If it is your turn, your opponent has the win. If you think he cannot 
play peifectly, make a small random move and hope that he soon will 
make a mistake. 

If the pair is unsafe and it is your turn, how can you determine the 
safe position to which you must play? There are three cases to consider. 
In each case call the unsafe pair x/y, with x the smaller number, and 
write both numbers in Fibonacci notation. 

In the first case x is a B number. Move to reduce y to the number 
equal to the number obtained by deleting the right-hand digit of x.  For 
example, x/y = 10/15 = 100100/1000100. Since 100100 has the 1 far- 
thest to the right at an odd position, it is a B number. Delete its last digit 
to obtain 10010 = 6. The safe numbers you must produce (by removing 
from the larger pile) are 10 and 6. On a chessboard this corresponds to 
an orthogonal queen move. 

In the second case x is an A number, but y exceeds the number 
obtained by appending 0 to x.  Move to reduce the value of y to that 
number, for example, x/y = 9/20 = 100010/1010100. Because x's 1 far- 
thest to the right is in an even position, it is an A number. Appending 0 
produces 1000100 = 15. This is less than 20. Therefore the safe pair to 
play to is 9/15. On the chessboard this too is an orthogonal queen move. 

If the numbers do not conform to cases 1 and 2, do the following: 

1. Find the positive difference between x and y .  
2. Subtract 1, express the result in Fibonacci notation and 

change the last digit to 1. 
3. Append 0 to get one number. Append two 0's to get a second 

number. These two numbers are the safe pair you seek, even 
though the resulting Fibonacci numbers may be 
"noncanonical" in having consecutive 1's. 

An example of the third case is x/y = 24/32 = 10001000/10101000. 
The first and second cases do not apply. The difference between 24 and 
32 is 8. Subtracting 1 leaves 7. In Fibonacci notation 7 is 10100. Chang- 
ing the last digit to 1 produces 10101. Appending 0 and 00 yields the safe 



pair 10 10 1011 0 10 100 = 12/20. This result is reached by taking 12 from 
both piles. It corresponds to a diagonal queen move. 

It is impossible to go into the whys of Silber's bizarre strategy. 
Interested readers will find the proofs in Silber's 1977 paper, "Wythoff's 
Nim and Fibonacci Representations." Neither can I go into the ways in 
which Wythoff's game has been generalized, but a word or two should be 
added about the game's reverse, or misere, form: the last person to play 
loses. As T. H. O'Beirne makes clear in Puzzles and Paradoxes, misere 
Wythoff's Nim, like misere Nim, requires only a trivial alteration of the 
chart of safe pairs. Remove the first pair, 112, and substitute 011 and 212. 
The misere strategy is exactly like the standard strategy except that at the 
end you may have to play to 212 or 011 instead of 112. 

Let us modify Wythoff's Nim as follows. A player may take any 
positive number of counters from either pile, or he may take one 
counter from one pile and two counters from the other. Can the reader 
determine the chessboard model and the winning strategy? 

ANSWERS 

The task was to analyze a game (similar to Nim) in which players may 
take from either of two piles or take one counter from one pile and two 
counters from the other. The last person to play wins. In the un- 
bounded-chessboard model explained in the chapter, the first rule is 
equivalent to the move of a rook west or south and the second rule is 
equivalent to a knight jumping southwest. The take-away game is there- 
fore isomorphic with the game of cornering a chess piece that combines 
the powers of rook and knight. Among enthusiasts of unorthodox, or 
"fairy," chess such a piece is sometimes called a "chancelor" or some- 
times an "empress." 

If the piece moves only like a rook, the game on the chessboard is the 
same as standard Nim with two piles. Safe pairs are any two equal 
positive integers. They correspond to cells on the board's main diagonal 
that passes through corner cells 010 and 717. The player who places the 
rook (on the top row or the column farthest to the right) wins only by 
putting it on 717. Thereafter his strategy is always to move to the diago- 
nal. In the take-away game this means keeping the piles equal. The safe 
pairs are simply 111, 212, 313. . . . 

Surprisingly, giving the rook the additional power of a knight has no 
effect on this strategy. Applying the recursive technique explained ear- 
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lier, we find that the safe cells (or safe pairs) are exactly the same as in 
the rook game. 

The misere form of rook-knight Nim (the last person to play loses) is 
more interesting. The safe pairs are 011, 213, 415, 617. . . . On a chess- 
board these unordered pairs are the cells shown in gray in Figure 52. The 
"placer" has the win, but he must put the rook-knight on a cell adjacent 
to the cell in the top right corner. Thereafter he moves to occupy a safe 
cell. This procedure eventually brings him to 011 or 1/0, forcing his 
opponent to make the final move. 

Readers might enjoy analyzing the game on a standard chessboard 
when the placed piece has other chess powers, in each case limiting 
moves to west, south and southwest. A "superqueen" or "amazon" 
(combining queen and knight) means a loss for the placer in standard 
and reverse play. A king loses for the placer in standard play but wins in 
misere. The same result emerges if the piece is a king-knight or a king- 
rook. The placer wins in both types of play if the piece is a king-bishop. 

ADDENDUM 

Figure 53 shows in gray the safe cells for the king, rook and bishop Nim. 
The bishop game is trivialized by the fact that the bishop cannot legally 
move to the target from any square off the main diagonal. If we restrict 
the bishop to this diagonal, the second player obviously wins the stan- 
dard game and loses the reverse game. 

We can ignore combining the powers of queen and king, queen- 
bishop or queen-rook or combining rook and bishop, because such 

Figure 52 
Safe cells of reverse rook-knight Nim 
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Standard Reverse 

King 

Rook 

Bishop 

Figure 53 King, rook and bishop Nim 

pieces are clearly equivalent to the queen. Safe cells are shown in Figure 
54 for the superqueen or amazon (queen-knight), superking (king- 
knight), king-rook (in shogi, or Japanese chess, there is such a piece 
called the rya-ou) and the king-bishop (ryu-ma in shogi). In all cases we 
assume that a piece can move only west, south or southwest. 

Combining bishop and knight produces a piece known to some 
fairy-chess buffs as the "abbot," to others as the "princess." Christopher 
Arata sent a detailed analysis of Nimlike games to be played, under 
various rules, with this piece on an unlimited board. If we limit the 
playing field to those cells from which it is possible to move to the target 
square, the top of Figure 55 shows the safe cells for standard and reverse 
play. Arata suggested allowing the abbot to move southeast as well as 
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Standard Reverse 

King-bishop 

Figure 54 Pieces with combined powers 

southwest, in which case the safe cells become those shown at the 
bottom of the illustration. It is not known how to state rules that general- 
ize these patterns to unlimited boards. 

All these games have, of course, corresponding rules for playing Nim 
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Standard Reterse 

Figure 55 The abbot (bishop-knight) with S ,  W and SW moves (top), and SE  
added (bottom) 

with two piles of counters. For other ways of modifying Wythoff's game, 
readers are referred to papers listed in the bibliography. Many readers 
pointed out ways in which Silber's algorithm for calculating the winning 
strategy in Wythoff's Nim can be simplified for efficient computer 
programs. 
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