
Spanning-Tree Games
Dan Hefetz1

Department of Computer Science, Ariel University, Israel

Orna Kupferman2

School of Computer Science and Engineering, The Hebrew University, Israel

Amir Lellouche
Department of Computer Science, Weizmann Institute of Science, Israel

Gal Vardi
School of Computer Science and Engineering, The Hebrew University, Israel

Abstract
We introduce and study a game variant of the classical spanning-tree problem. Our spanning-tree
game is played between two players, min and max, who alternate turns in jointly constructing a
spanning tree of a given connected weighted graph G. Starting with the empty graph, in each
turn a player chooses an edge that does not close a cycle in the forest that has been generated so
far and adds it to that forest. The game ends when the chosen edges form a spanning tree in G.
The goal of min is to minimize the weight of the resulting spanning tree and the goal of max is
to maximize it. A strategy for a player is a function that maps each forest in G to an edge that
is not yet in the forest and does not close a cycle.

We show that while in the classical setting a greedy approach is optimal, the game setting is
more complicated: greedy strategies, namely ones that choose in each turn the lightest (min) or
heaviest (max) legal edge, are not necessarily optimal, and calculating their values is NP-hard.
We study the approximation ratio of greedy strategies. We show that while a greedy strategy for
min guarantees nothing, the performance of a greedy strategy for max is satisfactory: it guar-
antees that the weight of the generated spanning tree is at least w(MST (G))

2 , where w(MST (G))
is the weight of a maximum spanning tree in G, and its approximation ratio with respect to an
optimal strategy for max is 1.5 + 1

w(MST (G)) , assuming weights in [0, 1]. We also show that these
bounds are tight. Moreover, in a stochastic setting, where weights for the complete graph Kn

are chosen at random from [0, 1], the expected performance of greedy strategies is asymptotically
optimal. Finally, we study some variants of the game and study an extension of our results to
games on general matroids.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases Algorithms, Games, Minimum/maximum spanning tree, Greedy algo-
rithms

Digital Object Identifier 10.4230/LIPIcs.MFCS.2018.35

Related Version A full version of the paper is available at http://www.cs.huji.ac.il/~ornak/
publications/mfcs18a.pdf.

Acknowledgements We thank Yuval Peled for helpful discussions.

1 The research leading to this paper was done when the author was visiting the Hebrew University.
2 The research leading to this paper has received funding from the European Research Council under the

European Union’s Seventh Framework Programme (FP7/2007-2013).

© Dan Hefetz, Orna Kupferman, Amir Lellouche, and Gal Vardi;
licensed under Creative Commons License CC-BY

43rd International Symposium on Mathematical Foundations of Computer Science (MFCS 2018).
Editors: Igor Potapov, Paul Spirakis, and James Worrell; Article No. 35; pp. 35:1–35:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2018.35
http://www.cs.huji.ac.il/~ornak/publications/mfcs18a.pdf
http://www.cs.huji.ac.il/~ornak/publications/mfcs18a.pdf
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


35:2 Spanning-Tree Games

(a) (b) (c) (d)

Figure 1 A weighted graph (a), its maximal spanning tree (b), and the outcomes of an optimal
strategy (c) and a greedy one (d).

1 Introduction

The fundamental minimum (respectively, maximum) spanning tree problem receives as an
input a connected edge-weighted undirected graph and searches for a spanning tree, namely
an acyclic subgraph that connects all vertices, with a minimum (respectively, maximum)
weight. The problem can be solved efficiently [19, 26]. It has attracted much attention, has
led to a lot of research on algorithms, and has many applications [28, 10, 14].

We introduce and study a natural game variant of the classical problem. Our spanning-tree
game is played between two players, min and max, who alternate turns in jointly constructing
a spanning tree of a given connected weighted graph G = 〈V,E,w〉. Starting with the empty
graph, in each turn a player chooses an edge that does not close a cycle in the forest that has
been generated so far and adds it to that forest. The game ends when the chosen edges form
a spanning tree in G, that is, after |V | − 1 turns. The goal of min is to minimize the weight
of the resulting spanning tree and the goal of max is to maximize it. A strategy for a player
is a function that maps each forest in G to one of its legal moves, namely, it maps a forest
F ⊆ E to an edge e ∈ E \ F such that F ∪ {e} is also a forest. Given two strategies πmax
and πmin, we define the outcome of πmax and πmin as the spanning tree obtained when max
and min follow πmax and πmin, respectively, in a turn-based game in which max moves first.
The value of a strategy πmax of max is the minimum over all strategies π′min of min of the
weight of the spanning tree that is the outcome of the game in which max follows πmax and
min follows π′min. Then, an optimal strategy for max is a strategy with a maximum value.
Thus, an optimal strategy for max is one that obtains the maximal value against the most
hostile behavior (intuitively, the “most minimizing” strategy) of min. The value of a strategy
for min is defined dually. In particular, an optimal strategy for min is one that obtains the
minimal value against the “most maximizing” strategy for max. In this paper we focus on
values of strategies of max. Indeed, unless we bound the ratio between the weights of the
heaviest and lightest edges in the graph, we cannot bound the “damage” that max can cause
min, namely the ratio between the performance of min strategies and the minimum spanning
tree, making the study of the game setting from the viewpoint of min less interesting.

I Example 1. Consider the weighted graph G appearing in Figure 1 (a). The weight of
G’s (unique, in this example) maximum spanning tree is 33 (see (b)). An optimal strategy
for max chooses in its first two moves the edges with weights 5 and 4, leading, against an
optimal strategy of min, to the spanning tree of weight 31 appearing in (c).

The transition from the classical one-player setting of the spanning-tree problem to a
two-player setting corresponds to a transition from closed systems, which are completely under
our control, to open systems, in which we have to contend with adversarial environments.
Such a transition has been studied in computer science in logic [8, 27], complexity [6], and



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:3

temporal reasoning [23], and it attracts growing attention now in algorithmic game theory,
cf. [24]. Our work here studies this transition in graph theory. For the basic problem of
reachability, the two-player setting has given rise to alternating graph reachability [8]. We find
it very interesting to study how other basic problems and concepts in graph algorithms evolve
when we shift to a two-player setting [20]. Several graph games of this type were previously
studied. For example, consider the general setting in which max and min alternately claim
edges of a graph G while making sure the graph they build together satisfies some monotone
decreasing property. The Turán numbers and Saturation numbers refer to the number of
edges that can be claimed while the property is maintained [13, 17]. Likewise, researchers
have studied the game chromatic number of G, namely the smallest k for which min has a
strategy to color all vertices in a game in which max and min alternately properly color the
vertices of G using the colors {1, . . . , k} [1]. Finally, a game variant of the maximum-flow
problem, where the algorithm can direct the flow only in a subset of the vertices is studied in
[21].

Before we continue to describe our results, let us survey several games that have been
studied and are based on minimum or maximum spanning trees. In the cooperative minimum
cost spanning tree game [7, 2], the cost allocation between users of a minimum spanning
tree is considered. Different properties of this cooperative game have been studied, such as
the core and the nucleolus [15, 16], the Shapley value [18], and more [11]. The Stackelberg
minimum spanning tree game [4, 5] is a one-round two-player network pricing game. The
game is played on a graph, whose edges are colored either red or blue, with the red edges
having a given fixed cost. The first player chooses an assignment of prices to the blue edges,
and the second player then buys the cheapest possible minimum spanning tree, using any
combination of red and blue edges. The goal of the first player is to maximize the total
price of purchased blue edges. Shannon’s switching game is another related two-player game.
Two players take turns coloring the edges of an arbitrary graph. One player has the goal of
connecting two distinguished vertices by a path of edges of her color. The other player aims
to prevent this by using her color instead (or, equivalently, by erasing edges) [22, 3].

The classical maximum spanning-tree problem can be solved efficiently. Indeed, the
forests embodied in a graph induce a matroid [25], and thus a greedy approach is optimal.
Accordingly, in Kruskal’s algorithm [19] for the maximum spanning-tree problem, the edges
are chosen in a greedy manner, where in each step an edge with a maximum weight that
does not close a cycle is added.

We study greedy strategies in the spanning-tree game. There, max always chooses an
edge with a maximum weight that does not close a cycle. We first show that the game
setting is indeed more complicated. First, greedy strategies are not necessarily optimal. For
example, in the graph from Example 1, a greedy strategy for max chooses in its first three
moves the edges with weight 8, 7, and 6, leading to the spanning tree of weight 27 appearing
in Figure 1 (d). In addition, we show that given a strategy for max, it is NP-complete to
calculate its value, and NP-hardness holds already for greedy strategies. Subsequently, we
turn to study how well greedy strategies for max perform. We evaluate them with respect
to the value of the maximum spanning tree, and with respect to the value of an optimal
strategy for max. We analyze both the general and stochastic settings. We view our findings
in both evaluations as good news. Indeed, greedy strategies for max ensure surprisingly tight
approximations in all cases.

It is not hard to see that the value of any greedy strategy for max is at least half the
weight of a maximum spanning tree. Indeed, the tree generated by such a strategy includes at
least the heavier half of the set of edges that are chosen by a greedy algorithm in the classical

MFCS 2018



35:4 Spanning-Tree Games

setting. Much harder is the study of the approximation ratio of a greedy strategy for max
with respect to an optimal strategy for her. We show that when the weight of the maximum
spanning tree tends to infinity, the approximation ratio tends to 1.5. More formally, assuming
that the weights are normalized to values in [0, 1] (note that such a normalization does not
affect the ratio between the values of different strategies), we show an approximation ratio of
1.5 + 1

w(MST (G)) , where w(MST (G)) is the weight of a maximum spanning tree of G. We
show that our results are tight: for every odd integer n ≥ 1, there exists a weighted graph
G = 〈V,E,w〉 with w(MST (G)) = 2n, such that the value of the greedy strategy for max is
n, whereas the value of an optimal strategy is dn2 e+ n. Thus, the ratio between the maximal
spanning tree and the value of the greedy strategy is 2, and the ratio between the values of
the optimal and the greedy strategies is 1.5 + 1

w(MST (G)) . We also show that, unlike the case
of greedy strategies of max, one cannot bound the approximation ratio of greedy strategies
of min. As we elaborate in Section 7, since the set of forests that are subgraphs of a given
graph form the family of independent sets of a matroid, many of our results go beyond the
spanning-tree problem and apply to matroids in a game setting.

We then study the approximation ratio of greedy strategies for max in a stochastic setting.
Namely, we study the game played on complete graphs whose edge-weights are chosen by a
uniform distribution over [0, 1]. Building on results of [12] regarding the weight of maximum
and minimum spanning trees in such randomly weighted graphs, we are able to show that,
in this setting, the approximation ratio of any greedy max strategy is asymptotically almost
surely (a.a.s., for brevity) 1. Thus, while in the worst case the approximation ratio is 2 with
respect to a maximum spanning tree and it tends to 1.5 with respect to an optimal strategy,
it is a.a.s. 1 when we choose the edge-weights uniformly at random.

Finally, we study two variants of the setting. First, a finer definition of an approximation
ratio, where performance of a strategy for max is examined with respect to all strategies of
min, and second, a two-turn variant of the game, where max first chooses a forest of size k,
for a parameter k of the game, and then min completes the forest to a spanning tree.

2 Preliminaries

2.1 Graphs and Weighted Graphs

An undirected graph is a pair G = 〈V,E〉, where V is a finite set and E is a set of pairs of
elements of V . We refer to the elements of V as vertices and to the elements of E as edges.
A graph may contain parallel edges. A path in G is a sequence of vertices v1, v2, . . . , vk such
that 〈vi, vi+1〉 ∈ E for all 1 ≤ i < k. A cycle in G is a path v1, v2, . . . , vk for which v1 = vk.
A graph G = 〈V,E〉 is connected if for every two vertices v, v′ ∈ V , there is a path between
v and v′ in G. A tree is a connected graph with no cycles. A forest is a graph with no cycles,
namely a collection of trees. A spanning tree of G is a tree 〈V, T 〉, for a subset T ⊆ E. Note
that the size of a spanning tree is n− 1. When the set V of vertices is clear from the context,
we describe trees and forests by their sets of edges only.

A weighted graph G = 〈V,E,w〉 augments a graph with a weight function w : E → R+.
We extend w to subsets of E in the expected way, i.e., w : 2E → R+ is such that for all
A ⊆ E, we have w(A) =

∑
e∈A w(e). In the maximum spanning tree problem, we are given a

weighted graph G and seek a spanning tree for G of a maximum weight. Note that G may
have several maximum spanning trees. By abuse of notation, we use MST (G) to denote any
maximum spanning tree of G.



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:5

2.2 Matroids

A finite matroid M is a pair 〈E, I〉, where E is a finite set (called the ground set) and I
is a family of subsets of E (called the independent sets) that satisfies the following three
properties: (1) I is not empty, (2) The hereditary property: If X ∈ I and Y ⊆ X, then
Y ∈ I, and (3) The independent set exchange property: If X and Y are in I and |X| > |Y |,
then there is an element x ∈ X \ Y such that Y ∪ {x} is in I.

For a graph G = 〈V,E〉, let FG be the set of forests in G. The pair 〈E,FG〉 is a matroid
and is called the cycle matroid of G (see, e.g., [25]).

2.3 The Spanning-Tree Game

We consider a game variant of the maximum spanning tree problem: there are two players,
max and min, who alternate turns in jointly constructing a spanning tree of a given weighted
graph. Starting with the empty graph, in each turn, a player chooses an edge that does not
close a cycle in the forest that has been generated so far and adds it to that forest. The
game ends when the chosen edges are forming a spanning tree, that is, after n− 1 turns. The
goal of min is to minimize the weight of the resulting spanning tree and the goal of max is
to maximize it. Formally, we have the following.

Let G = 〈V,E,w〉 be a weighted graph, and let FG be the set of all forests F ⊆ E. A
configuration in the spanning-tree game is a forest F ∈ FG. Let M : FG → 2E be a function
that maps a configuration F to the set of all legal moves for a player when the game is in F .
Formally, M(F ) = {e ∈ E \ F : the graph 〈V, F ∪ {e}〉 has no cycles}.

A strategy for a player is a function π : FG → E that maps each configuration to one of
its legal moves. Thus, for all F ∈ FG, we have π(F ) ∈M(F ). If M(F ) = ∅ (that is, when F
is already a spanning tree), then π(F ) is undefined.3 Given two strategies πmax and πmin, we
define the outcome of πmax and πmin, denoted T (πmax, πmin), as the spanning tree obtained
when max and min follow πmax and πmin, respectively, in a turn-based game in which max
moves first. Formally, T (πmax, πmin) = {e1, . . . , en−1} is such that for all 1 ≤ i ≤ n− 1, the
following holds.

ei =
[
πmax({e1, e2, . . . , ei−1}) if i is odd,
πmin({e1, e2, . . . , ei−1}) if i is even.

We use w(πmax, πmin) to denote the weight of T (πmax, πmin). Thus, w(πmax, πmin) =
w(T (πmax, πmin)).

We refer to a strategy for max as a max strategy and to a strategy for min as a min
strategy. Note that max moves when the current configuration has an even number of edges,
and min moves when the configuration has an odd number of edges. Let FevenG and FoddG

be the subsets of FG that contain forests of even and odd sizes, respectively. Let Πmax

and Πmin be the set of all possible strategies for the max and min players, respectively.
By the above, Πmax contains strategies πmax : FevenG → E and Πmin contains strategies

3 We could have defined π to return a special signal, say ⊥, in this case, but we ignore it and assume that
the game ends after n− 1 rounds, so there is no need to apply a strategy from configurations that are
spanning trees.

MFCS 2018



35:6 Spanning-Tree Games

πmin : FoddG → E.4 We evaluate a max strategy πmax by its performance against a best (that
is, most minimizing) min strategy. Formally, we define the value of a max strategy by

valmax(πmax) = min{w(πmax, πmin) : πmin ∈ Πmin}.

Since the number of strategies is finite, the above expression always has a minimum and is
thus well defined. Dually, we evaluate a min strategy πmin by its performance against a best
(that is, most maximizing) max strategy. Formally, we define the value of a min strategy
by valmin(πmin) = max{w(πmax, πmin) : πmax ∈ Πmax}. Our study here focuses on max
strategies. Essentially, our choice follows from the fact that, unlike the case of max strategies,
one cannot bound the ratio between the outcome of an optimal or a greedy min strategy
and the minimum spanning tree. Intuitively, it follows from the fact that the performance
of strategies is strongly related to our ability to guarantee a favorable outcome even if we
can control only half of the choices. Such a control guarantees that max can add to the
spanning tree at least half of the heaviest edges in a maximum spanning tree. Such a control
also guarantees that min can add to the spanning tree at least half of the lightest edges in
a minimum spanning tree. Without, however, a bound on the ratio between the heaviest
and lightest edge, such a guarantee is not of much help. In the full version, we motivate this
choice further and present some results on min strategies.

The following lemma is an easy useful observation on the amount of control max and
min have on the outcome of the game.

I Lemma 2. Let G = 〈V,E,w〉 be a weighted graph and let F be a forest of G. Then, max
has a strategy to ensure that the outcome includes at least d|F |/2e edges of F , and min has
a strategy to ensure that the outcome includes at least b|F |/2c edges of F .

Proof. We prove our claim for min; the proof for max is analogous. It suffices to show that,
in each of his first b|F |/2c moves, min can claim an edge of F . For every 1 ≤ i ≤ b|F |/2c, let
e1, . . . , e2i−1 denote the edges claimed by both players up until min’s i-th move. In his i-th
move, min claims an arbitrary edge e2i ∈ F \ {e1, . . . , e2i−1} such that {e1, . . . , e2i−1, e2i}
spans a forest. Such an edge e2i exists since |F | > 2i− 1 = |{e1, . . . , e2i−1}| and both F and
{e1, . . . , e2i−1} are forests of G, i.e., independent sets in its cycle matroid. J

2.4 Optimal and Greedy Strategies
We define the following strategies:

An optimal max strategy is a strategy π∗max ∈ Πmax such that for every strategy πmax ∈
Πmax, we have valmax(π∗max) ≥ valmax(πmax). Such a strategy necessarily exists as the
number of max strategies is finite.
Similarly, π∗min ∈ Πmin is an optimal min strategy, if for every strategy πmin ∈ Πmin, we
have valmin(π∗min) ≤ valmin(πmin).
A strategy gmax ∈ Πmax is a greedy strategy for max if for every configuration F ∈ FevenG ,
it holds that gmax(F ) is a heaviest edge in M(F ). Formally, for every configuration
F ∈ FevenG , we have gmax(F ) ∈ {e ∈M(F ) : w(e) = max{w(e′) : e′ ∈M(F )}}.

4 Formally, by our definition of a strategy, every strategy for max and every strategy for min should have
a well-defined legal move for every configuration in FG. We have chosen to restrict the definition of
such strategies only to the configurations they might actually encounter during play. For completeness,
one can define them for all the remaining configurations arbitrarily or, again, by using the symbol ⊥.
Also, note that strategies are positional, in the sense they ignore the way in which configurations have
been obtained. It is easy to see that memoryfull strategies are not stronger in the spanning-tree game.



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:7

I Remark. There may be several optimal and greedy strategies but, from now on, for
each weighted graph G we define π∗min, π∗max, and gmax as one of the strategies that satisfy
the corresponding conditions and, sometimes, write “the optimal min strategy” or “the
greedy max strategy”. Moreover, when evaluating the performance of a greedy strategy,
we consider the worst case. That is, the value of a greedy strategy is min{valmax(gmax) :
gmax is a greedy strategy in Πmax}.

2.5 On the Complexity of Evaluating Strategies for MAX

Recall that the maximum spanning-tree problem can be solved in polynomial time. A
possible way of computing π∗min and π∗max is by solving a Minmax problem, which requires
exponential time. We show here that the game setting is indeed more complex than the
classical one-player setting. In fact, even evaluating the value of a symbolically given max
strategy is co-NP-complete, and the co-NP lower bound holds also for greedy strategies.

I Theorem 3. Let πmax be a max strategy given by a linear ordering e1, . . . , e|E| of the edges
in E, where πmax chooses in each step the edge ej with the minimal index j for which ej is
a legal move. Let k be an integer. Deciding whether valmax(πmax) > k is co-NP-complete.
Furthermore, it is co-NP-hard already when πmax is a worst greedy strategy for max, that is,
a greedy strategy with the lowest value.

Proof. First, if valmax(πmax) ≤ k then there is a polynomial witness that includes the edges
that min chooses in each turn, such that the weight of the outcome is at most k. Hence the
membership in co-NP.

We now show the lower bound. Let G = 〈V,E〉 be a graph, let S ⊆ V , and let k be an
integer. The Steiner-tree problem, namely, deciding whether there is a tree of size at most
k in G that spans S, is NP-hard. We show a reduction from the Steiner tree problem. We
construct a weighted graph G′ = 〈V ′, E′, w′〉 as follows. Let u0 be a vertex in V . The set V ′
is obtained from V by adding k new vertices, namely V ′ = V ∪ {u1, . . . , uk}. The set E′ is
obtained from E by adding the edges {〈ui, ui+1〉 : 0 ≤ i < k} ∪ (S × S), where parallel edges
are allowed. That is, an edge e ∈ S × S is added even if it already appears in E. For every
e ∈ E we define w′(e) = 0, and for every new edge e ∈ E′ \E we define w′(e) = 1. Let πmax
be a max strategy in which max first chooses edges in {〈ui, ui+1〉 : 0 ≤ i < k}, and when it
is not possible anymore she chooses edges in S × S, and when it is not possible anymore she
chooses edges in E. We prove that there is a tree in G that spans S and has size at most k
iff valmax(πmax) ≤ k. Assume that there is a tree in G that spans S and has size at most k.
We denote this tree by T . Then, while max chooses edges in {〈ui, ui+1〉 : 0 ≤ i < k}, min
can choose all the edges of T and thus ensure that max will not be able to choose edges in
S × S later. Since the edges {〈ui, ui+1〉 : 0 ≤ i < k} appear in every spanning tree, the value
of πmax is k.

Assume now that there is no tree in G that spans S and has size at most k. Thus, after
all the edges in {〈ui, ui+1〉 : 0 ≤ i < k} are chosen, there are still edges in S × S that max
can choose, and therefore the value of πmax is strictly larger than k.

Finally, note that the strategy πmax is a worst greedy strategy for max, and hence the
problem is co-NP-hard already for this case. J

MFCS 2018



35:8 Spanning-Tree Games

G1

1 1

0

1

G2

1

1

1

1

0 0

1

· · · Gn

1
1

1
1

1
1

1
1

0 0

0 0

. . .

1

Figure 2 A sequence of weighted graphs G1, G2, . . . such that Gn satisfies n = valmax(gmax) =
valmax(π∗

max) = 1
2 · w(MST (Gn)).

3 The Performance of Optimal and Greedy Strategies w.r.t. the
Maximum Spanning Tree

In the game setting, max has a chance to choose only half of the edges in the spanning
tree. It is thus not surprising that the outcome of an optimal strategy may be only half of
the weight of an MST. Below we formalize this intuition, and show that the half-ratio may
be obtained already by a greedy strategy (Theorem 4) and that this upper bound is tight
(Theorem 5).

I Theorem 4. For every weighted graph G, we have that valmax(gmax) ≥ 1
2 · w(MST (G)).

Proof. Let G = 〈V,E,w〉, and let 〈e1, . . . , en−1〉 be a vector of the edges of some maximum
spanning tree of G, where w(ei) ≥ w(ei+1) for every 1 ≤ i < n− 1. Consider the game on G
in which max plays according to gmax and min plays according to some strategy πmin. For
every 1 ≤ j ≤ d(n− 1)/2e, let xj denote the edge of G that max chooses in her j-th move.
For every 1 ≤ j ≤ b(n− 1)/2c, let yj denote the edge of G that min chooses in his j-th move.
Our goal is to prove that
d(n−1)/2e∑

j=1
w(xj) +

b(n−1)/2c∑
j=1

w(yj) ≥
1
2 ·

n−1∑
j=1

w(ej).

We prove that, in fact, already
∑d(n−1)/2e
j=1 w(xj) ≥ 1

2 ·
∑n−1
j=1 w(ej). Since all edge-weights

are non-negative, this implies our goal.
To see this, consider an integer 0 ≤ k < (n− 1)/2. Note that |{x1, . . . xk, y1, . . . , yk}| =

2k < 2k + 1 = |{e1, . . . , e2k+1}|. Since, moreover, {x1, . . . xk, y1, . . . , yk} and {e1, . . . , e2k+1}
are independent sets of a matroid (namely, the cycle matroid of G), there exists some
edge e ∈ {e1, . . . , e2k+1} ∩M({x1, . . . xk, y1, . . . , yk}). Since max plays according to the
greedy strategy, it must be that w(xk+1) ≥ w(e) ≥ w(e2k+1). Hence,

∑d(n−1)/2e
j=1 w(xj) ≥∑d(n−1)/2e−1

j=0 w(e2j+1) ≥ 1
2 ·
∑n−1
j=1 w(ej), and the statement follows. J

I Theorem 5. For every n ≥ 1, there is a weighted graph Gn such that n = valmax(π∗max) =
1
2 · w(MST (Gn)). In fact, for Gn we also have valmax(gmax) = n.

Proof. See the weighted graphs G1, G2, . . . in Figure 2. Note that MST (Gn) includes all
the edges with weight 1, and that min can ensure that all the edges with weight 0 are chosen.

J

4 The Performance of Greedy Strategies w.r.t. Optimal Ones

In this section we study the performance of the greedy max strategy in comparison to
the optimal max strategy. We first define formally what it means for two strategies to
approximate each other.



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:9

Figure 3 valmax(gmax) = 1 whereas valmax(π∗
max) = 2.

4.1 Approximating Strategies
Given a weighted graph G = 〈V,E,w〉, consider two max strategies πmax, π′max ∈ Πmax and
a factor α ≥ 1. We say that πmax is an α-max-approximation of π′max if

valmax(πmax) ≥ 1/α · valmax(π′max).

That is, intuitively, π′max is at most α times better than πmax, where, in both cases, we
assume that min follows an optimal min strategy.

The max competitive ratio of a strategy πmax ∈ Πmax is then the smallest factor α such
that πmax is an α-max approximation of π∗max. Namely, valmax(π∗max)

valmax(πmax) .
I Remark (Universal Approximation). We could have defined strategy approximations in
a different way, by stating that πmax is an α-max-approximation of π′max if for every
strategy πmin ∈ Πmin, we have that w(πmax, πmin) ≥ 1

α · w(π′max, πmin). We refer to
such an approximation as α-max universal approximation. Intuitively, while in α-max-
approximation the performance of the two max strategies is examined with respect to optimal
(possibly different from each other) min strategies, in α-max universal approximation the
performance is examined with respect to every min strategy – the same min strategy against
both max strategies. In the full version, we show that α-max universal approximation is
strictly finer than α-max approximation. That is, for all πmax, π′max ∈ Πmax and α ≥ 1, if
πmax is an α-max universal approximation of π′max, then πmax is an α-max approximation
of π′max, yet possibly πmax is an α-max approximation of π′max but it is not an α-max
universal approximation of π′max. Moreover, working with a max universal approximation,
the competitive ratio of the greedy strategy with respect to the optimal strategy is 2, higher
than the ratio we prove in Theorem 7, when working with a max approximation.

4.2 The Competitive Ratio of Greedy Max Strategies
We turn to study the max competitive ratio of the greedy strategy. For convenience, we
assume that the weight function w is normalized so that max{w(e) : e ∈ E} = 1. It is easy
to see that such a normalization is always possible and does not change the ratio of the
weights of any two spanning trees.

I Theorem 6. The max competitive ratio of the greedy strategy is 2.

Proof. We first prove that gmax is a 2-max approximation. By Theorem 4, we have 2 ·
valmax(gmax) ≥ w(MST (G)). In addition, as no max strategy can perform better than
the weight of a maximum spanning tree, we have that w(MST (G)) ≥ valmax(πmax) for all
πmax ∈ Πmax. Hence, valmax(gmax) ≥ 1

2 · valmax(πmax) for all πmax ∈ Πmax, and we are
done.

Next, in order to prove that the factor 2 is tight, consider the graph in Figure 3. It is
easy to see that while an optimal max strategy would choose first the parallel edge with
weight 1, leading to a spanning tree of weight 2, a greedy strategy may choose first the edge
on the right, leading to a spanning tree of weight 1. J

MFCS 2018



35:10 Spanning-Tree Games

4.3 A Tighter Analysis
While showing tightness in the general case, the lower-bound proof in Theorem 6 is based on
a graph with a maximum spanning tree of a very small weight. In this section we show that
gmax approximates π∗max better when w(MST (G)) is large.

I Theorem 7. Let G = 〈V,E,w〉 be a weighted graph, and assume that the weights in
G are normalized such that the maximum weight of an edge in E is 1. Then, gmax is a
1.5 + 1

w(MST (G)) -max-approximation of π∗max.

Proof. We start with a brief description of the main idea of the proof. Let 〈e1, . . . , en−1〉 be
the edges claimed by max and min in this order when max follows a greedy strategy gmax
and min follows a strategy πmin that is optimal against gmax. Using the fact that gmax is a
greedy strategy, we will show that min has a strategy π′min such that, when pitted against an
optimal strategy π∗max of max (in fact, against any max strategy), it ensures that the weight
of the resulting spanning tree is at most (1.5 + 1/w(MST (G))) ·

∑n−1
i=1 w(ei). Note that π′min

might not be an optimal min strategy, but this only makes the proven result stronger. The
heart of the argument is that as long as max can claim high (in comparison to what she
claimed when she followed gmax) weight edges, min can claim quite a few low (in comparison
to what he claimed when he followed πmin) weight edges.

We proceed to the formal proof. Let πmin ∈ Πmin be a min strategy for which
valmax(gmax) = w(gmax, πmin). Let 〈e1, . . . , en−1〉 be a vector of edges of T (gmax, πmin),
where, for every 1 ≤ i ≤ n−1, if i is odd, then ei is chosen by max in her ((i+ 1)/2)-th move,
and if i is even, then ei is chosen by min in his (i/2)-th move. Let Eodd = {e1, e3, . . . , eb},
where b = n− 1− (n mod 2), be the edges chosen by max, and let Eeven = {e2, e4, . . . , ea},
where a = n− 2 + (n mod 2), be the edges chosen by min. Let d1 > . . . > dk be the distinct
weights of the edges in Eodd, and let t1, . . . , tk be positive integers such that Eodd contains
exactly ti edges of weight di for every 1 ≤ i ≤ k. Let t′0 = 0 and, for every 1 ≤ i ≤ k, let
t′i = t′i−1 + 2ti. Thus, t′i =

∑i
j=1 2tj . Note that, for every 1 ≤ i ≤ k, the edges of Eodd

whose weight is di are {et′
i−1+1, et′

i−1+3, . . . , et′
i
−1}. For example, w(e1) = w(e3) = . . . =

w(e2t1−1) = d1, and w(e2t1+1) = w(e2t1+3) = . . . = w(e2t1+2t2−1) = d2. Since the weights in
G are normalized so that the maximum weight of an edge in G is 1 and since gmax is greedy,
we have that d1 = 1.

We argue that min has a strategy π′min with which he can ensure that, by deviating from
the greedy strategy gmax, max does not greatly improve the weight of the tree she builds with
him. We define the strategy π′min as follows. Consider a forest Fm = {e′1, e′2, . . . , e′m} ∈ FoddG ,
where m < bn−1

2 c. Let 0 ≤ i < k be the unique integer for which t′i
2 ≤ m <

t′i+1
2 . Then,

π′min(Fm) is an arbitrary edge in M(Fm) ∩ {e2, e4, . . . , et′
i+1
}; by definition, this is a legal

move. Moreover, by the independent set exchange property of the cycle matroid of G, such an
edge exists. For example, if m < t1, then π′min(Fm) is an arbitrary edge of {e2, e4, . . . , e2t1}
that was not chosen earlier and does not close a cycle with Fm.

Since valmax(π∗max) ≤ w(π∗max, π′min), it suffices to prove that w(π∗max,π
′
min)

valmax(gmax) ≤ 1.5 +
1

w(MST (G)) . For an integer t, let V t1 , . . . , V tst
be the vertex sets of the connected components

induced by the forest {e1, . . . , et}. Let Et denote the set of edges of G that are contained
in some connected component of {e1, . . . , et}, that is, 〈u, v〉 ∈ Et if and only if there exists
some 1 ≤ i ≤ st such that u, v ∈ V ti . Note that every forest in G contains at most∑st

j=1(|V tj | − 1) = t edges of Et.
Let E′ = {e′1, . . . , e′n−1} denote the edge set of T (π∗max, π′min). Note that by the descrip-

tion of the strategy π′min, for every 1 ≤ i < k, the forest {e′1, e′2, . . . , e′t′
i
/2} contains at least

b t
′
i/2
2 c edges from Et

′
i ∩ Eeven. Since E′ ∩ Et′i contains at most t′i edges, it follows that



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:11

E′ ∩ Et′i contains at most t′i − b
t′i/2

2 c = d1.5 · t
′
i

2 e edges from E \ Eeven. Note that for every
edge e 6∈ Et′i , we have that w(e) ≤ di+1. Indeed, otherwise max would have chosen et′

i
+1

such that w(et′
i
+1) > di+1. Hence, E′ \ Eeven contains at most 1.5 · t

′
i

2 + 0.5 edges from
{e ∈ E : w(e) > di+1}.

We now show that E′ \Eeven contains at most 1.5 · t
′
k

2 + 0.5 edges. Assume first that n− 1
is even and thus t′k = n− 1. The forest {e′1, e′2, . . . , e′t′

k
/2} contains at least

⌊
t′k/2

2

⌋
edges from

Eeven. Since E′ contains t′k edges, it follows that E′ contains at most t′k − b
t′k/2

2 c = d1.5 · t
′
k

2 e
edges from E \ Eeven. Hence, E′ \ Eeven contains at most 1.5 · t

′
k

2 + 0.5 edges. Now, assume
that n− 1 is odd and thus t′k = n. Note that E′ contains at least b b

n−1
2 c
2 c = b 0.5n−1

2 c edges
from Eeven. Therefore, the size of E′ \Eeven is at most n−1−b 0.5n−1

2 c = dn−1− 0.5n−1
2 e =

d 3n
4 − 0.5e ≤ d 3n

4 e = d1.5 · t
′
k

2 e ≤ 1.5 · t
′
k

2 + 0.5.
Since for every 1 ≤ i < k the forest E′ \ Eeven contains at most 1.5 · t

′
i

2 + 0.5 edges from
{e ∈ E : w(e) > di+1}, and since E′\Eeven contains at most 1.5 · t

′
k

2 +0.5 edges, then the total
weight of E′ \Eeven is at most d1(1.5 · t

′
1
2 +0.5)+

∑k
i=2 di · [(1.5 ·

t′i
2 +0.5)− (1.5 · t

′
i−1
2 +0.5)] =

d1(1.5t1 + 0.5) +
∑k
i=2 di · (1.5ti) = 0.5d1 +

∑k
i=1 1.5tidi.

We are now ready to bound w(π∗max,π
′
min)

valmax(gmax) from above.

w(π∗max, π′min)
valmax(gmax) = w(E′)

w(Eeven) +
∑k
i=1 tidi

≤ w(Eeven) + w(E′ \ Eeven)
w(Eeven) +

∑k
i=1 tidi

≤
w(Eeven) + 0.5d1 +

∑k
i=1 1.5tidi

w(Eeven) +
∑k
i=1 tidi

=
w(Eeven) +

∑k
i=1 tidi +

∑k
i=1 0.5tidi + 0.5d1

w(Eeven) +
∑k
i=1 tidi

≤ 1 +
∑k
i=1 0.5tidi + 0.5d1∑k

i=1 tidi
= 1.5 + 0.5d1∑k

i=1 tidi
≤ 1.5 + 0.5

0.5 · w(MST (G))

= 1.5 + 1
w(MST (G)) .

The last inequality follows from the fact
∑k
i=1 tidi ≥ 0.5·w(MST (G)) (see proof of Theorem 4)

and d1 = 1. J

The following theorem asserts that the approximation ratio given in Theorem 7 is tight.

I Theorem 8. Let n ≥ 1 be an odd integer. There exists a weighted graph Gn with
w(MST (Gn)) = 2n and with a maximum edge weight of 1, such that valmax(π∗max)

valmax(gmax) =
1.5 + 1

w(MST (G)) .

Proof. We define Gn = 〈V,E,w〉 as follows. First, let V = V1 ∪ V2, where V1 = {v0, v1, . . . ,

vn} and V2 = {v0, u1, . . . , un}. Note that the vertex v0 appears in both V1 and V2. Then, let
E = E1 ∪ E2 where E1 = {〈vi, vi+1〉 : 0 ≤ i ≤ n− 1} and E2 ⊆ V2 × V2 is the disjoint union
of two spanning trees T0 and T1 on the vertices of V2. It is not hard to see that such two
spanning trees always exist. For n ≤ 2, one needs parallel edges, as in G1, which appears in
Figure 3. For n ≥ 3, the graph Gn appears in Figure 4, where the edges in T1 are solid, and
these in T0 are dashed.

For every edge e ∈ E1 ∪ T1 we have w(e) = 1 and for every edge e ∈ T0 we have w(e) = 0.
The edges in E1 must be contained in every spanning tree of Gn. Therefore, if m edges from
T1 are chosen during the game for some m ≤ n, then the outcome of the game is m + n.

MFCS 2018



35:12 Spanning-Tree Games

Figure 4 The graph Gn with valmax(π∗max)
valmax(gmax) = 1.5 + 1

w(MST (Gn)) .

Thus, an optimal strategy π∗max is to have as many edges from T1 as possible. Hence, by
Lemma 2 we have valmax(π∗max) = dn2 e+ n. In the strategy gmax, max chooses only the n
edges in E1, and hence valmax(gmax) = n.

Since n is odd, we have valmax(π∗max)
valmax(gmax) = dn

2 e+n
n =

n
2 +0.5+n

n = 1.5+ 1
2n = 1.5+ 1

w(MST (Gn)) . J

5 A Stochastic Setting

The weighted graphs {Gn : n ∈ N} depicted in Figure 2 form an infinite family of games in
which gmax is an optimal strategy for max. In this section we prove that gmax is not far
from being optimal in a very natural and general case.

I Theorem 9. Consider the weighted graph G = 〈V,E,w〉, where V = [n], E =
([n]

2
)
, and

{w(e) : e ∈ E} are independent random variables, each having a uniform distribution over
[0, 1]. Then, asymptotically almost surely (a.a.s., for brevity)

lim
n→∞

valmax(gmax)
valmax(π∗max) = 1.

The main ingredient in our proof of Theorem 9 is the following result, which is an
immediate corollary of the main result of [12] (see also [9] and the many references therein).

I Theorem 10. For n ≥ 1, consider the complete graph with n vertices Kn, and let
{Xe : e ∈ E(Kn)} be independent random variables, each having a uniform distribution over
[0, 1]. Let Ym (respectively, YM ) denote the weight of a minimum (respectively, maximum)
spanning tree. Then
(a) limn→∞ Pr(Ym ≤ 1.21) = 1.
(b) limn→∞ Pr(YM ≥ n− 2.21) = 1.

Proof of Theorem 9. It readily follows from Theorem 4 and Part (b) of Theorem 10 that
a.a.s. valmax(gmax) ≥ (n− 2.21)/2. Let T be a spanning tree with weight at most 1.21; such
a tree exists a.a.s. by Part (a) of Theorem 10. It follows by Lemma 2 that min has a strategy
to ensure that the tree he builds with max contains at least b|T |/2c = b(n − 1)/2c edges
of T . The weight of the tree they build is thus at most 1.21 + d(n− 1)/2e ≤ (n+ 2.42)/2.
Hence, a.a.s.

lim
n→∞

valmax(gmax)
valmax(π∗max) ≥ lim

n→∞

(n− 2.21)/2
(n+ 2.42)/2 = 1

as claimed. J



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:13

6 A Two-Turn Variant of the Spanning-Tree Game

In this section we study a variant of the game in which the players alternate turns only once.
Formally, we have the following. A game is a pair 〈G, k〉, where G = 〈V,E,w〉 is a weighted
graph with n vertices and 1 ≤ k ≤ n− 1 is an integer. In a game on 〈G, k〉, first max chooses
a forest F ⊆ E of size k. Then, min complements F to a spanning tree of G by choosing
n− 1− k edges. max wants to maximize the weight of the resulting spanning tree and min
aims to minimize it. Let gmax ⊆ E be a strategy for max in which she chooses a forest of
size k with a maximum weight, that is, max chooses a forest in a greedy manner. Note
that while we still use the notation which was introduced in Subsection 2.4 (e.g., gmax), the
definition of a strategy is different in this setting. A strategy πmax of max is simply the edge
set of some forest of G of size k. Similarly, a strategy πmin for min is a function that, given
a forest F of size k, returns a forest F ′ of size n− 1− k such that F ∪ F ′ is a spanning tree.

I Theorem 11. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n.
Then, valmax(gmax) ≥ k

n−1 · w(MST (G)).

Proof. Let T = {e1, . . . , en−1}, where w(e1) ≥ . . . ≥ w(en−1), be an MST obtained by
complementing gmax in a greedy manner. That is, gmax = {e1, . . . , ek}. Note that for every
k < i ≤ n− 1 we have w(ei) ≤ w(ek). Therefore, w(MST (G)) = w(T ) = w({e1, . . . , ek}) +
w({ek+1, . . . , en−1}) ≤ w(gmax) + (n− k − 1) · w(ek). Since w(ek) ≤ 1

k · w(gmax), we have
w(MST (G)) ≤ w(gmax)+(n−k−1) · 1

k ·w(gmax) = n−1
k ·w(gmax) ≤ n−1

k ·valmax(gmax). J

I Theorem 12. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n. Then, gmax is a
2-max-approximation.

Proof. Let πmin be a strategy for which valmax(gmax) = w(gmax, πmin) and let T =
T (gmax, πmin). Let π∗max be an optimal strategy for max. Consider the strategy π′min
of min in which π∗max is complemented to a spanning tree as follows. Since |π∗max| =
k and |T | = n − 1, min can choose n − 1 − k edges from T due to the independent
set exchange property of the cycle matroid of G. For such a strategy π′min, we have
valmax(π∗max) ≤ w(π∗max, π′min) ≤ w(π∗max) + w(T ). Since gmax is a forest of maximum
weight among all forests of G with k edges, it follows that w(π∗max) ≤ w(gmax), and thus
valmax(π∗max) ≤ w(gmax) + w(T ) ≤ 2 · w(T ) = 2 · valmax(gmax). J

The following result is a straightforward consequence of Theorems 11 and 12.

I Corollary 13. Let 〈G, k〉 be a game, where G = 〈V,E,w〉 and |V | = n. Then, gmax is a
min{2, n−1

k }-max-approximation.

In the following theorem we show that the approximation ratio in Corollary 13 is tight.

I Theorem 14. Let n > 1 and 1 ≤ k ≤ n− 1 be integers. There exists a game 〈G, k〉, where
G = 〈V,E,w〉 and |V | = n, such that valmax(π∗max)

valmax(gmax) = min{2, n−1
k }, where π

∗
max is an optimal

strategy for max in G.

Proof. Let V = V1 ∪ V2, where V1 = {v0, v1, . . . , vk} and V2 = {v0, u1, . . . , un−1−k}. Note
that the vertex v0 appears in both V1 and V2. Let E = E1 ∪ E2, where E1 = {〈vi, vi+1〉 :
0 ≤ i ≤ k − 1} and E2 = E(T0) ∪ E(T1), where T0 and T1 are edge-disjoint spanning trees
of G[V2] (we allow parallel edges in E2). For every edge e ∈ E1 ∪ T1 we set w(e) = 1 and
for every edge e ∈ T0 we set w(e) = 0. Note that if max chooses m edges in T1 for some
m ≤ n− 1− k, then min can choose n− 1− k −m edges in T0 due to the independent set

MFCS 2018



35:14 Spanning-Tree Games

exchange property of the cycle matroid of G. The edges of E1 must be contained in every
spanning tree of G. Therefore, if max chooses m edges from T1, then the outcome of the
game is m+ k. Thus, the optimal strategy π∗max contains as many edges from T1 as possible,
namely, min{k, n− 1− k} edges from T1. The strategy gmax contains the k edges in E1, and
therefore valmax(gmax) = k.

If k ≤ n−1
2 then π∗max contains k edges from T1 and hence we have valmax(π∗max)

valmax(gmax) = 2k
k =

2 = min{2, n−1
k }. If k >

n−1
2 then π∗max contains n− 1− k edges from T1 and hence we have

valmax(π∗max)
valmax(gmax) = n−1

k = min{2, n−1
k }. J

7 Discussion

We studied a game variant of the classic maximum spanning-tree problem. Both the classic
problem and our spanning-tree game can be generalized in a straightforward way to all
matroids. In the game setting, given a weighted matroid M = 〈E, I, w〉, max and min
alternate turns in claiming elements of E while ensuring that the set of elements claimed so
far by both players is in I. The game is over as soon as the set of claimed elements is a basis
B of M . max aims to maximize the total weight of B and min aims to minimize it. It is
not hard to show that all of our results (with the exception of Theorem 9, which deals only
with weighted complete graphs) apply in this more general setting. The only non-trivial
generalization is that of one specific point in the proof of Theorem 7, which we explain below.

When defining Et, instead of relying on the connected components of the forest {e1, . . . , et},
one can use the rank function5 r of the matroid. That is, Et = {e ∈ E : r({e}∪{e1, . . . , et}) =
r({e1, . . . , et})}. It then readily follows from the definitions of r and of Et that |B ∩Et| ≤ t
holds for every B ∈ I.

The graph depicted in Figure 3, which is used to show that, in general, the competitive
ratio of greedy strategies is 2, contains parallel edges. One then wonders whether the
competitive ratio of greedy strategies is better than 2 under the assumption that the graph on
which the game is played is simple. At the moment we only know that this ratio is between
5/3 and 2. One can also consider graphs that are not only simple, but have a large girth6.
The intuition behind this is that, in order to prevent max from claiming a certain edge,
min must ensure that claiming it closes a cycle, and this seems harder if all cycles are long.
Moreover, when the girth is 2, i.e., there are parallel edges, we know that the competitive
ratio is 2. On the other hand, when the game is played on a tree, i.e., the girth is infinite,
the competitive ratio is trivially 1. This shows that increasing the girth does decrease (in
some way) the competitive ratio of greedy strategies from 2 to 1.

Finally, our game is a special case of the so-called biased game, in which max claims p
edges per turn and then min claims q edges per turn, where p and q are positive7 integers that
are allowed to grow with n. It would be interesting to study how changing the parameters p
and q would affect our results.

5 The rank function of a matroid M = 〈E, I〉 is a mapping r : 2E → N that maps each subset A of E to
the size of a largest independent set it contains; i.e., r(A) = max{|B| : B ⊆ A,B ∈ I}.

6 The girth of a graph G is the length of a shortest cycle in G. If G is a forest, then its girth is defined to
be ∞.

7 In fact, by allowing p = 0 (respectively, q = 0) we get the original minimum (resp., maximum) spanning
tree problem for which greedy strategies are optimal regardless of the value of q (resp., p).



D. Hefetz, O. Kupferman, A. Lellouche, and G. Vardi 35:15

References
1 T. Bartnicki, J. A. Grytczuk, H. A. Kierstead, and X. Zhu. The map coloring game.

American Mathematical Monthly, 114:793–803, 2007.
2 C.G. Bird. On cost allocation for a spanning tree: a game theoretic approach. Networks,

6(4):335–350, 1976.
3 J. Bruno and L. Weinberg. A constructive graph-theoretic solution of the shannon switching

game. IEEE Transactions on Circuit Theory, 17(1):74–81, 1970.
4 J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, S. Langerman, I. Newman, and O. Wei-

mann. The stackelberg minimum spanning tree game. Algorithmica, 59(2):129–144, 2011.
5 J. Cardinal, E.D. Demaine, S. Fiorini, G. Joret, I. Newman, and O. Weimann. The stack-

elberg minimum spanning tree game on planar and bounded-treewidth graphs. Journal of
combinatorial optimization, 25(1):19–46, 2013.

6 A.K. Chandra, D.C. Kozen, and L.J. Stockmeyer. Alternation. Journal of the Association
for Computing Machinery, 28(1):114–133, 1981.

7 A. Claus and D. J. Kleitman. Cost allocation in networks: The bulk supplier problem.
Networks, 4(1):1–17, 1974.

8 S.A. Cook. Path systems and language recognition. In Proc. 2nd ACM Symp. on Theory
of Computing, pages 70–72, 1970.

9 C. Cooper, A. Frieze, N. Ince, S. Janson, and J. Spencer. On the length of a random
minimum spanning tree. Combinatorics, Probability and Computing, 25:89–107, 2016.

10 T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introduction to Algorithms. MIT Press and
McGraw-Hill, 1990.

11 B. Dutta and A. Kar. Cost monotonicity, consistency and minimum cost spanning tree
games. Games and Economic Behavior, 48(2):223–248, 2004.

12 A. M. Frieze. On the value of a random minimum spanning tree problem. Discrete Applied
Mathematics, 10:47–56, 1985.

13 Z. Füredi, D. Reimer, and A. Seress. Triangle-free game and extremal graph problems.
Congressus Numerantium, 82:123–128, 1991.

14 R.L Graham and P. Hell. On the history of the minimum spanning tree problem. Annals
of the History of Computing, 7(1):43–57, 1985.

15 D. Granot and G. Huberman. Minimum cost spanning tree games. Mathematical program-
ming, 21(1):1–18, 1981.

16 D. Granot and G. Huberman. On the core and nucleolus of minimum cost spanning tree
games. Mathematical programming, 29(3):323–347, 1984.

17 D. Hefetz, M. Krivelevich, A. Naor, and M. Stojaković. On saturation games. European
Journal of Combinatorics, 41:315–335, 2016.

18 A. Kar. Axiomatization of the shapley value on minimum cost spanning tree games. Games
and Economic Behavior, 38(2):265–277, 2002.

19 J.B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical society, 7(1):48–50, 1956.

20 O. Kupferman. Examining classical graph-theory problems from the viewpoint of formal-
verification methods. In Proc. 49th ACM Symp. on Theory of Computing, page 6, 2017.

21 O. Kupferman, G. Vardi, and M.Y. Vardi. Flow games. In Proc. 37th Conf. on Foundations
of Software Technology and Theoretical Computer Science, 2017, to appear.

22 A. Lehman. A solution of the shannon switching game. Journal of the Society for Industrial
and Applied Mathematics, 12(4):687–725, 1964.

23 O. Lichtenstein and A. Pnueli. Checking that finite state concurrent programs satisfy their
linear specification. In Proc. 12th ACM Symp. on Principles of Programming Languages,
pages 97–107, 1985.

MFCS 2018



35:16 Spanning-Tree Games

24 N. Nisan, T. Roughgarden, E. Tardos, and V.V. Vazirani. Algorithmic Game Theory.
Cambridge University Press, 2007.

25 J. Oxley. Matroid Theory, 2nd edition. Oxford University Press, 2011.
26 R.C. Prim. Shortest connection networks and some generalizations. Bell Labs Technical

Journal, 36(6):1389–1401, 1957.
27 L.J. Stockmeyer. On the combinational complexity of certain symmetric boolean functions.

Mathematical Systems Theory, 10:323–336, 1977.
28 R.E. Tarjan. Data structures and network algorithms. SIAM, 1983.


	Introduction
	Preliminaries
	Graphs and Weighted Graphs
	Matroids
	The Spanning-Tree Game
	Optimal and Greedy Strategies
	On the Complexity of Evaluating Strategies for MAX

	The Performance of Optimal and Greedy Strategies w.r.t. the Maximum Spanning Tree
	The Performance of Greedy Strategies w.r.t. Optimal Ones
	Approximating Strategies
	The Competitive Ratio of Greedy Max Strategies
	A Tighter Analysis

	A Stochastic Setting
	A Two-Turn Variant of the Spanning-Tree Game
	Discussion

