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Abstract
In Maximum k-Vertex Cover (Max k-VC), the input is an edge-weighted graph G and an integer
k, and the goal is to find a subset S of k vertices that maximizes the total weight of edges covered
by S. Here we say that an edge is covered by S iff at least one of its endpoints lies in S.

We present an FPT approximation scheme (FPT-AS) that runs in (1/ε)O(k)poly(n) time for
the problem, which improves upon Gupta, Lee and Li’s (k/ε)O(k)poly(n)-time FPT-AS [30, 29].
Our algorithm is simple: just use brute force to find the best k-vertex subset among the O(k/ε)
vertices with maximum weighted degrees.

Our algorithm naturally yields an (efficient) approximate kernelization scheme of O(k/ε)
vertices; previously, an O(k5/ε2)-vertex approximate kernel is only known for the unweighted
version of Max k-VC [43]. Interestingly, this also has an application outside of parameterized
complexity: using our approximate kernelization as a preprocessing step, we can directly apply
Raghavendra and Tan’s SDP-based algorithm for 2SAT with cardinality constraint [52] to give
an 0.92-approximation algorithm for Max k-VC in polynomial time. This improves upon the
best known polynomial time approximation algorithm of Feige and Langberg [23] which yields
(0.75 + δ)-approximation for some (small and unspecified) constant δ > 0.

We also consider the minimization version of the problem (called Min k-VC), where the goal
is to find a set S of k vertices that minimizes the total weight of edges covered by S. We provide a
FPT-AS for Min k-VC with similar running time of (1/ε)O(k)poly(n). Once again, this improves
on a (k/ε)O(k)poly(n)-time FPT-AS of Gupta et al. On the other hand, we show, assuming
a variant of the Small Set Expansion Hypothesis [50] and NP * coNP/poly, that there is no
polynomial size approximate kernelization for Min k-VC for any factor less than two.
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1 Introduction

In the Vertex Cover problem, we are given a graph G and an integer k, and the goal is to
determine whether there is a set S of k vertices that covers all the edges, where the edge is
said to be covered by S if at least one of its endpoints lies in S. Vertex Cover is a classic
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15:2 On Max k-Vertex Cover

graph problem and is among Karp’s original list of 21 NP-complete problems [37]. This
NP-hardness has led to studies of variants of the problems. One such direction is to consider
the optimization versions of the problem. Arguably, the two most natural optimization
formulations of Vertex Cover are the Minimum Vertex Cover (Min VC) problem, where
the constraint that every edge is covered is treated as a hard constraint and the goal is to
find S with smallest size that satisfies this, and the Maximum k-Vertex Cover (Max k-VC)
problem2, where the cardinality constraint |S| = k is treated as a hard constraint and the
goal is to find such S that covers as many edges as possible.

Both problems have been thoroughly studied in the approximation algorithms and
hardness of approximation literature. Min VC admits a simple greedy 2-approximation
algorithm3, which has been known since the seventies (see e.g. [26]). The approximation ratio
has subsequently been slightly improved [9, 47] and, currently, the best known approximation
ratio in polynomial time is (2− 1/O(

√
logn)) [36]. There has also been a number of works

on hardness of approximation of Vertex Cover [11, 34, 22, 41, 8, 39, 40]. The best known
NP-hardness of approximation for Min VC, established in the recent works that resolve the
(imperfect) 2-to-1 conjecture [39, 20, 21, 40], has a factor of (

√
2−ε) for any ε > 0. Assuming

the Unique Games Conjecture (UGC) [38], the inapproximability ratio can be improved to
(2− ε) for any ε > 0 [41, 8], which is tight up to lower order terms.

Unlike Min VC, tight approximability results for Max k-VC are not known (even assuming
UGC). In particular, on the algorithmic front, the best known efficient approximation
algorithm due to Feige and Langberg [23] yields a (0.75 + δ)-approximation for the problem,
where δ > 0 is a (small) constant. This was an improvement over an earlier 0.75-approximation
algorithm of Ageev and Sviridenko [2], which in turn improved upon the simple greedy
algorithm that yields (1 − 1/e)-approximation for the problem [35]. (See also [33, 32, 31]
where improvements have been made for certain ranges of k and n.) On the hardness of
approximation front, it is known that the problem is NP-hard to approximate to within
(1 + δ) factor for some (small) δ > 0 [49]. Moreover, it follows from a result of Austrin, Khot
and Safra [7] that it is UG-hard to approximate the problem to within a factor of 0.944. (See
Appendix A of the full version [44].) This leaves quite a large gap between the upper and
lower bounds, even assuming the UGC.

Approximability is not the only aspect of Vertex Cover and its variants that has been
thoroughly explored: its parameterized complexity is also a well-studied subject. Recall
that an algorithm is said to be fixed-parameter (FPT) with respect to parameter k if it
runs in time f(k) · poly(n) for some function f , where n is the size of the input. An FPT
algorithm (with running time kO(k) · poly(n)) was first devised for Vertex Cover by Buss and
Goldsmith [14]. Since then, many different FPT algorithms have been discovered for Vertex
Cover; to the best of our knowledge, the fastest known algorithm is that of Chen, Kanj and
Xia [17], which runs in 1.2738k · poly(n) time.

Notice that an FPT algorithm for Vertex Cover can also be adapted to solve Min VC in
FPT time parameterized by the optimal solution size, by running the Vertex Cover algorithm
for k = 1, 2, . . . until it finds the size of the optimal solution. On the other hand, Max k-VC

2 Max k-VC and Min k-VC (which will be introduced below) are sometimes referred to as the Max Partial
Vertex Cover and Min Partial Vertex Cover respectively. However, we decide against calling them as
such to avoid ambiguity since Partial Vertex Cover has also used to refer to a different variant of Vertex
Cover (see e.g. [10]).

3 Throughout this note, we use the convention that the approximation ratio is the worst case ratio
between the cost of the output solution and the optimum. In other words, the approximation ratios
for maximization problems will be at most one, whereas the approximation ratios for minimization
problems will be at least one.
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is unlikely to admit an FPT algorithm, as it is W[1]-hard [28]. Circumventing this hardness,
Marx [46] designed an FPT approximation scheme (FPT-AS), which is an FPT algorithm
that can achieve approximation ratio (1− ε) (or (1 + ε) for minimization problems) for any
ε > 0, for Max k-VC. In particular, his algorithm runs in time (k/ε)O(k3/ε) · poly(n). This
should be contrasted with the aforementioned fact that Max k-VC does not admit a PTAS
unless P = NP. Recently, the FPT-AS has been sped up by Gupta, Lee and Li [30, 29]4 to
run in time (k/ε)O(k) · poly(n).

FPT algorithms are intimately connected to the notion of kernel. A kernelization algorithm
(or kernel) of a parameterized problem is a polynomial time algorithm that, given an instance
(I, k), produces another instance (I ′, k′) such that the size of the new instance |I ′| and the
new parameter k′ are both bounded by g(k) for some function g. It is well known that a
parameterized problem admits a kernel if and only if it admits FPT algorithms [15]. Once
again, many kernels are known for Vertex Cover (see e.g. [1] and references therein). On the
other hand, the W[1]-hardness of Max k-VC means that it does not admit a kernel unless
W[1] = FPT.

Recently, there have been attempts to make the concept of kernelization compatible
with approximation algorithms [24, 43]. In this note, we follow the notations defined by
Lokshtanov et al. [43]. For our purpose, it suffices to define an α-approximate kernel for an
parameterized optimization problem as a pair of polynomial time algorithms A, the reduction
algorithm, and B, the solution lifting algorithm, such that (i) given an instance (I, k), A
produces another instance (I ′, k′) such that |I ′|, k′ are bounded by g(k) for some g and (ii)
given an β-approximate solution s′ for (I ′, k′), B produces a solution s of (I, k) such that s is
an (αβ)-approximate solution5 for (I, k). Akin to (exact) kernelization, Lokshtanov et al. [43]
shows that a decidable parameterized optimization problem admits α-approximate kernel
if and only if it admits an FPT α-approximation algorithm. (We refer interested readers
to Section 2.1 of [43] for more details.) In light of Marx’s algorithm for Max k-VC [46],
this immediately implies that Max k-VC admits (1− ε)-approximate kernel for any ε > 0.
Lokshtanov et al. [43] made this bound more specific, by showing that the insights from
Marx’s work can be turned into an (1− ε)-approximate kernel where the number of vertices
in the new instance is at most O(k5/ε2).

Minimum k-Vertex Cover. We will also consider the minimization variant of the Min
k-VC, which we call Minimum k-Vertex Cover (Min k-VC). The goal of this problem is to
find a subset of k vertices that minimizes the number of edges covered. Note that this is not
a natural relaxation of Vertex Cover and is in fact more closely related to edge expansion
problems. (See [25] and discussion therein for more information.) The greedy algorithm that
picks k vertices with minimum degrees yields a 2-approximation. Gandhi and Kortsarz [25]
showed that this is likely tight: assuming the Small Set Expansion Conjecture [50], it is hard
to approximate Min k-VC to within (2− ε) factor for any ε > 0. As for its parameterized
complexity, similar to Max k-VC, Min k-VC is W[1]-hard [28] and admits an FPT-AS with
running time (k/ε)O(k) [30, 29].

4 In fact, Gupta et al.gives an FPT-AS for Min k-VC; it is trivial to see that their algorithm works for
Max k-VC as well.

5 We use a similar convention here as our convention for approximation ratios. That is, α 6 1 for
maximization problems and α > 1 for minimization problems. Note that this is not the same as in [43]
where α > 1 in both cases; nevertheless, it is simple to see that these different conventions do not effect
any of the results.
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Weight vs Unweighted. All results stated above are for unweighted graphs. The natural
extensions of Max k-VC (resp. Min k-VC) to edge-weighted graphs ask to find subsets of
vertices of size k that maximizes (resp. minimizes) the total weight of the edges covered.
To avoid confusion, we refer to these weighted variants explicitly as Weighed Max k-VC
and Weight Min k-VC. Clearly, since these problems are more general than the unweighted
ones, the lower bounds above (including inapproximability results and W[1]-hardness) applies
immediately. It is also quite simple to check that all aforementioned polynomial time
approximation algorithms for the unweighted case extends naturally to the weighted setting
too. The FPT-ASes are slightly trickier, but Gupta et al. [30] provide an argument discretizing
the weights and extend their FPT-ASes to the weighted case with similar time complexity. It
is also possible to apply this argument to Lokshtanov et al.’s [43] approximate kernel, although
it would result in a graph of O(k7/ε4) vertices instead of O(k5/ε2) for the unweighted case.

1.1 Our Results
For convenience, all our results stated below are for the weighted version of the problems,
and moreover we allow self-loops in the input graph. This is the most general version of the
problem and, hence, the algorithmic results below apply directly to the unweighted case (nd
the weighted simple graph case. We also note that this choice is partly motivated by the
fact that in some applications, such Gupta et al.’s [30, 29] algorithms for Minimum k-Cut,
this full generality is needed. (Unfortunately, our result does not imply faster algorithms for
Minimum k-Cut, as the bottlenecks of Gupta et al.’s approach is elsewhere6.)

We remark that, while the algorithmic results apply directly to the more restricted
version, the approximate kernel does not. This is because, in a more restricted version (e.g.
unweighted) of the problems, the instance output by the reduction algorithm is also more
restrictive (e.g. unweighted), meaning that one cannot simply use the approximate kernel
for the more general version. Nevertheless, as we will point out below, our approximate
kernel also extends to the unweighted setting (and simple graph setting), with a small loss in
parameter.

Maximum k-Vertex Cover
Our first result is a faster FPT-AS for Max k-VC that runs in time O(1/ε)k · poly(n), which
improves upon a (k/ε)k · poly(n)-time FPT-AS due to Gupta, Lee and Li [29].

I Theorem 1. For every ε > 0, there exists an (1− ε)-approximation algorithm for Weighted
Max k-VC that runs in time O(1/ε)k · poly(n).

Perhaps more importantly, our FPT-AS is simple and yields a new insight compared to
the previous FPT-ASes [46, 30, 29]. In particular, our algorithm is just the following: restrict
ourselves only to the O(k/ε) vertices with maximum weighted degrees and use brute force to
find a k-vertex subset among these vertices that cover edges with maximum total weight.

To demonstrate the differences to the previous algorithms, let us briefly sketch how they
work here. The known FPT-ASes [46, 30, 29] all rely on a degree-based argument for the
unweighted case due to Marx [46] who consider the following two cases:

6 For their FPT approximation algorithm [30], the bottleneck is in the reduction from Min k-Cut to
Laminar k-Cut which runs in time 2O(k2) · poly(n). For their (1 + ε)-approximation algorithm [29], the
bottleneck is in the dynamic programming step which takes (k/ε)O(k) · poly(n) time.
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1. The vertex with maximum degree have degree at least k2/ε. In this case, one can simply
take the k vertices with largest degree because the number of edges with both endpoints
in the set is at most

(
k
2
)
, meaning that it only affects the number of edges covered by at

most an ε factor and thus this is already an (1− ε)-approximation for the problem.
2. The vertex with maximum degree have degree at most k2/ε. The key property in this

case is that the number of edges covered by the optimal solution is at most k3/ε, which
is bounded by a function of k. Marx’s algorithm then proceeds as follows: (i) guess the
number of edges ` 6 k3/ε in the optimal solution, (ii) guess (among the k` possibilities)
which vertex (in the solution) that each edge is covered by, (iii) randomly color each edge
in the input graph with one of ` colors and randomly color each vertex with one of k
colors and (iv) finally, determine whether there are k vertices each of different color that
covers edges with colors as guessed in Step (ii). Note that Step (iv) can be easily done in
polynomial time. Since ` is bounded by k3/ε, the algorithm succeeds with probability
at least k−O(k3/ε), which can be turned into a randomized algorithm with running time
k−O(k3/ε) · poly(n) that succeeds with high probability. Finally, it can be derandomized
using standard techniques (see [3]).

The speed-up of Gupta et al. [30, 29] comes from the change in the second case. Roughly
speaking, they show that more elaborated coloring techniques can be used, in conjunction
with dynamic programming, to speed the second case up to (k/ε)O(k) · poly(n).

Intuitively, our result shows that this case-based analysis is in fact not needed, as it
suffices to consider the O(k/ε) vertices with highest weighted degrees. Moreover, a nice
feature about our algorithm is that it works naturally for the weighted case, whereas Gupta
et al. needs to employ a discretization argument to deal with this case. (See Section 5.2 in
the full version of [30].)

Another feature of our algorithm is that it immediately gives an approximate kernelization
for the problem, by restricting to the subgraph induced by the O(k/ε) vertices and adding
self-loops with appropriate weights to compensate the edges from these vertices to the
remaining vertices. This results in an (1− ε)-approximate kernelization of O(k/ε) vertices
for Max k-VC:

I Lemma 2. For every ε > 0, Weighted Max k-VC admits an (1−ε)-approximate kernelization
with O(k/ε) vertices.

As stated earlier, the above result is not directly comparable to Lokshtanov et al.’s [43]
approximate kernel of O(k5/ε2) vertices for the unweighted version of Max k-VC. Fortunately,
our technique also gives an O(k/ε2)-vertex approximate kernel for the unweighted case, which
indeed improves upon Lokshtanov et al.’s result. (See the end of Section 3.2.)

Interestingly, the above approximate kernelization also has an application outside of
parameterized complexity: using our approximate kernelization as a preprocessing step, we
can directly apply Raghavendra and Tan’s SDP-based algorithm for 2SAT with cardinality
constraint [52] to give an 0.92-approximation algorithm for Max k-VC in polynomial time.
This improves upon the aforementioned polynomial time approximation algorithm of Feige
and Langberg [23] which yields (0.75 + δ)-approximation for some (small and unspecified)
constant δ > 0.

I Corollary 3. There exists a polynomial time 0.92-approximation algorithm for Weighted
Max k-VC.

We note here that the approximation guarantee above is even better than the previous
best known ratios for some special cases, such as in bipartite graph [4, 13] where the previous
best known approximation ratio is 0.821 [13].

SOSA 2019



15:6 On Max k-Vertex Cover

Minimum k-Vertex Cover
For the Weighted Min k-VC problem, we give a FPT-AS with similar running time of
O(1/ε)O(k) · poly(n) for the problem. Once again, this improves upon the (k/ε)O(k) · poly(n)-
time algorithm of Gupta et al. [30, 29].

I Theorem 4. For every ε > 0, there exists an (1 + ε)-approximation algorithm for Weighted
Min k-VC that runs in time O(1/ε)O(k) · poly(n).

We remark that this algorithm is different from the algorithm for Max k-VC and is
instead based on a careful branch-and-bound approach. A natural question here is perhaps
whether this difference is inherent. While it is unclear how to make this question precise, we
provide an evidence that the two problems are indeed of different natures by showing that,
in contrast to Max k-VC, a polynomial size approximate kernelization for Min k-VC for any
factor less than two is unlikely to exist:

I Lemma 5. Assuming the Strong Small Set Expansion Hypothesis (Conjecture 16) and
NP * coNP/poly, Weighted Min k-VC does not admit a polynomial size (2− ε)-approximate
kernelization for any ε ∈ (0, 1].

The above result is under a variant of the Small Set Expansion Hypothesis [50]; please
refer to Section 4.2 for the precise definition of the variant. We also note that the above
lower bound also applies to the unweighted version; again please see Section 4.2 for more
details.

2 Notations

Throughout this note, we think of an edge-weighted graph as a complete graph (self-loops
included) where each edge is endowed with a non-negative weight. More specifically, an
edge-weighted graph G consists of a vertex set VG and a weight function wG :

(
VG

62
)
→ R>0.

(Note that, for a set U and a non-negative integer `, we use
(
U
6`

)
and

(
U
`

)
to denote the

collections of subsets of U of sizes at most ` and exactly ` respectively.) When the graph
is clear from the context, we may drop the subscript G, and we sometimes use we to
denote w(e) for brevity. For each vertex v ∈ V , we use w-deg(v) to denote its weighted
degree, i.e., w-deg(v) =

∑
e∈(VG

62),v∈e we. For a subset S ⊆ VG, we write w-deg(S) to denote∑
v∈S w-deg(v). For subsets S, T ⊆ VG, we use EG(S, T ) to denote the total weight of

edges with at least one endpoint in S and at least one endpoint in T ; more specifically,
EG(S, T ) =

∑
e∈(VG

62),e∩S 6=∅,e∩T 6=∅ wG(e). Note that EG(S, S) is the total weight of the
edges covered by S; for brevity, we use EG(S) as a shorthand for EG(S, S). Finally,
we use OPTMin k-VC(G, k) and OPTMax k-VC(G, k) to denote the optimums of Min k-VC
and Max k-VC respectively on the instance (G, k). More formally, OPTMin k-VC(G, k) =
min

S∈(VG
k )EG(S) and OPTMax k-VC(G, k) = max

S∈(VG
k )EG(S).

3 Maximum k-Vertex Cover

We will now prove our results for Max k-VC. To do so, it will be convenient to order the
vertices of the input graph VG based on their weighted degree (ties broken arbitrarily), i.e.,
let v1, . . . , vn be the ordering of vertices in VG such that w-degG(v1) > · · · > ·w-degG(vn).
Moreover, we use Vi to denote the set of i vertices with highest weighted degree, i.e.,
Vi = {v1, . . . , vi}.
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3.1 A Simple Observation and A Faster FPT-AS

Our main insight to the Weighted Max k-VC problem is that there is always an (1 − ε)-
approximate solution which is entirely contained in VO(k/ε), as stated more formally below.

I Observation 6. For any ε > 0, let n′ = min{k + dk/εe, n}. Then, there exists S∗ ⊆ Vn′

of size k such that EG(S∗) > (1− ε) ·OPTMax k-VC(G, k).

Note that this implies Theorem 1: we can enumerate all k-vertex subsets of Vn′ and find an
(1− ε)-approximation for Max k-VC in

(|Vn′ |
k

)
poly(n) = O(n′/k)kpoly(n) = O(1/ε)kpoly(n)

time.
Before we present a formal proof of the observation, let us briefly give an (informal)

intuition behind the proof. Let SOPT be the optimal solution for (G, k). Our goal is to
construct another set S∗ ⊆ Vn′ such that EG(S∗) is roughly the same as EG(SOPT). To do
so, we will just replace each vertex in SOPT \ Vn′ by a vertex in Vn′ \ SOPT. Intuitively, this
should be good for the solution, as we are replacing one vertex with another vertex that
has higher weighted degree. However, this argument does not yet work: we might “double
count” edges with both endpoints coming from the new vertices. The key point here is
that, while we will not be able to avoid this double counting completely, we will be able to
pick new vertices such that the total weight of such doubled counted edges is small. This
is just because the set Vn′ is so large that even if we pick a random k vertices from it, the
probability that a given added edge is double counted is only O(ε).

Proof of Observation 6. Note that, if n′ = n, the statement is obviously true. Hence, we
may assume that n′ = k + dk/εe. Let SOPT ⊆ VG denote any optimal solution, i.e., any
subset of VG of size k with EG(SOPT) = OPTMax k-VC(G, k). Let Sin

OPT = SOPT ∩ Vn′ ,
Sout

OPT = SOPT \ Vn′ and U = Vn′ \ SOPT.
We construct S ⊆ Vn′ in randomly as follows. We randomly select a subset U∗ ⊆ U of

|Sout
OPT| vertices uniformly at random, and let S = Sin

OPT ∪U∗. Clearly, S is a subset of Vn′ of
size k. We will show that the expected value of EG(S) is at least (1− ε) ·OPTMax k-VC(G, k).
This would imply that there exists S∗ ⊆ Vn′ of size k such that EG(S∗) > (1 − ε) ·
OPTMax k-VC(G, k) as desired.

To bound E[EG(S)], let us first rearrange EG(S) as follows.

EG(S) = EG(Sin
OPT) + EG(U∗)− EG(U∗, Sin

OPT). (1)

Let ρ = |Sout
OPT|/|U |; note here that ρ 6 k/(n′−k) 6 ε. We can now bound E[EG(U∗, Sin

OPT)]
by

E[EG(U∗, Sin
OPT)] =

∑
u∈U

∑
v∈Sin

OPT

w{u,v} · Pr[u ∈ U∗]

= ρ ·
∑
u∈U

∑
v∈Sin

OPT

w{u,v} 6 ε · EG(Sin
OPT) (2)

SOSA 2019
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Moreover, E[EG(U∗)] can be rearranged as

E[EG(U∗)] = E

∑
u∈U∗

w-deg(u)− 1
2

∑
v∈U∗\{u}

w{u,v}


= E

∑
u∈U

w-deg(u) · 1[u ∈ U∗]− 1
2

∑
v∈U\{u}

w{u,v} · 1[u ∈ U∗ ∧ v ∈ U∗]


=
∑
u∈U

w-deg(u) · Pr[u ∈ U∗]− 1
2

∑
v∈U\{u}

w{u,v} · Pr[u ∈ U∗ ∧ v ∈ U∗]


>
∑
u∈U

w-deg(u) · ρ− 1
2

∑
v∈U\{u}

w{u,v} · ρ2


> ρ(1− ρ/2) ·

(∑
u∈U

w-deg(u)
)

> ρ(1− ε) ·
(∑
u∈U

w-deg(u)
)

(3)

where in the first inequality we use the fact that Pr[u ∈ U∗ ∧ v ∈ U∗] 6 Pr[u ∈ U∗] Pr[v ∈
U∗] = ρ2.

Recall that the vertices are sorted in decreasing order of degrees; thus, for all u ∈ U , we
have w-deg(u) >

(∑
v∈Sout

OPT
w-deg(v)

)
/|Sout

OPT| > EG(Sout
OPT)/|Sout

OPT|. From this and (3), we
arrive at

E[EG(U∗)] > ρ(1− ε) · |U | ·
(
EG(Sout

OPT)/|Sout
OPT|

)
= (1− ε) · EG(Sout

OPT) (4)

Plugging (2) and (4) back into (1), we indeed have

E[EG(S)] > (1− ε)(EG(Sin
OPT) + EG(Sout

OPT)) > (1− ε) · EG(SOPT),

which concludes the proof. J

3.2 An Approximate Kernel
Observation 6 also naturally gives an (1− ε)-approximate kernel for Weighted Max k-VC
where the new instance has O(k/ε) vertices, as stated below.

Proof of Lemma 2. The reduction algorithm A works by taking the graph induced on Vn′
(where n′ = min{k+ dk/εe, n} as in Observation 6) and add appropriate weights to self-loops
to compensate for edges going out of Vn′ . More precisely, A outputs (G′, k) where VG′ = Vn′

and w′G({u, v}) = w′G({u, v}) for all u 6= v ∈ VG′ and wG′(u) = wG(u) + EG({u}, VG \ Vn′)
for all u ∈ VG′ .

The solution lifting algorithm B simply outputs the same solution as its get. It is obvious
to see that EG′(S) = EG(S). Hence, if EG′(S) > α ·OPTMax k-VC(G′, k), then Observation 6
implies that EG(S) = EG′(S) > α(1 − ε) · OPTMax k-VC(G, k). This means that (A,B) is
an (1− ε)-approximate kernel; moreover, it is obvious that the graph output by A has size
O(k/ε) as desired. J
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As mentioned earlier, the above kernel does not directly work for the unweighted case.
Let us sketch below how we can modify the above proof to work in this case, albeit with a
slightly worse O(k/ε2) vertices in the reduced instance. We omit the full proof, which is a
simple undergraduate-level exercise, and only describe the main ideas. We do this in two
steps; we first modify the proof for weighted graphs without self-loops and then we proceed
to unweighted graphs.

Suppose that the graphs G and G′ must not contain any self-loops. Then, instead of
adding self-loops as above, A will add npadded = dkn′/εe = O(k/ε2) padded vertices
and let the weight between each padded vertex and u ∈ Vn′ be EG({u},VG\Vn′ )

npadded
. Once

again, if we take a look at any set S ⊆ Vn′ , we immediately have EG(S) = EG′(S). The
only additional argument needed is that these padded vertices has little effect on any
solution. Indeed, it is simple to see that the weighted degree of each padded vertex is at
most (ε/k) ·OPTMax k-VC(G, k). Thus, throwing these vertices away from any subset of
size k affect the total weights of edges covered by at most ε ·OPTMax k-VC(G, k), which
implies that this is an (1− 2ε)-approximate kernel. Adjusting ε appropriately gives the
(1− ε)-approximate kernel with O(k/ε2) vertices.
The above idea naturally adapts to the unweighted case. Instead of adding an edge from
every u ∈ Vn′ to all the padded vertices, we just add EG({u}, VG \ Vn′) edges from each
u ∈ Vn′ to different padded vertices. These edges are added in a way that each padded
vertices has roughly the same degree. It is simple to check that, if the degree of all
vertices u ∈ Vn′ is at most say k/ε2, then this works immediately (with the same proof
as above). The only issue is when there are vertices with degree larger than k/ε2. (In
this case, the number of edges required to be added may even be larger than npadded!)
Nevertheless, this issue can also be easily resolved, by observing that, if any vertex in Vk
has degree at least k/ε, then we can always take it in our solution while guaranteeing
that the solution still remains within ε · OPTMax k-VC(G, k) of the optimum. Hence,
the reduction algorithm can first greedily pick these vertices and then use the padded
argument as above; since no large degree vertex remains, the proof of the second step
now works and we have the desired approximate kernel.

3.3 Raghavendra-Tan Algorithm and An Improved Approximation
We next describe how our approximate kernel can be used a preprocessing step for the
aforementioned algorithm of Raghavendra and Tan [52] for Max 2SAT with cardinality
constraint to obtain improved approximation for Weighted Max k-VC.

Recall that the (weighted) Max 2SAT with cardinality constraint is the following problem.
Given a collection C of conjunctions of at most two literals (of variables {x1, . . . , xn}) and
their associated weights, find an assignment to {x1, . . . , xn} satisfying x1 + · · ·+ xn = k that
maximizes the total weights of satisfied clauses in C. Raghavendra and Tan [52] device an
algorithm with approximation ratio strictly greater than 0.92 for the problem, as stated
below.

I Theorem 7 ([52]). For some α > 0.92, there exists an α-approximation algorithm for Max
2SAT with cardinality constraint that runs in time7 npoly(n/k).

7 The running time of the algorithm is not stated in this form in [52] as they are only concerned about
the case where k = Ω(n), for which the running time is polynomial. To see that the running time is of
the form npoly(n/k), we note that their algorithm needs the variance guaranteed in their Theorem 5.1 to
be at most poly(k/n). This means that they need the SDP solution to be poly(k/n)-independence; to
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It is not hard to see that the Weighted Max k-VC can be formulated as Max 2SAT with
cardinality constraint: we create a variable xi for each vertex vi, and, for each {vi, vj} ∈

(
VG

62
)
,

we create a clause (vi ∨ vj) with weight w{vi,vj}. Obviously, any solution to Max 2SAT
satisfying x1 + · · · + xn = k is also a solution of Max k-VC with the same cost. Of
course, the only issue in applying Raghavendra and Tan’s algorithm here is that its running
time npoly(n/k) is not polynomial when k = o(n). Fortunately, our approximate kernel above
precisely circumvents this issue, as the reduction algorithm produces an instance (G′, k) where
|VG′ | 6 O(k/ε). Thus, we can now apply the algorithm and arrives at 0.92 approximation
for Weight Max k-VC in polynomial time.

Proof of Corollary 3. Let α be the approximation ratio from Theorem 7 and let ε > 0 be a
sufficiently small constant such that α(1− ε) > 0.92. Let A be the reduction algorithm for
the (1− ε)-approximate kernel as defined in the proof of Lemma 2.

For any instance (G, k) of Weight Max k-VC, we apply A to arrive at a reduced instance
(G′, k) where |VG′ | 6 O(k/ε). We then formulate the instance (G′, k) as an instance of
Max 2SAT with cardinality constraint and apply the Raghavendra-Tan algorithm, which
gives an α-approximate solution, i.e., a set S ⊆ VG′ of size k such that EG′(S) > α ·
OPTMax k-VC(G′, k) > α(1− ε) ·OPTMax k-VC(G, k) > 0.92 ·OPTMax k-VC(G, k). Note that
the Raghavendra-Tan algorithm runs in kpoly(|VG′ |/k) = kpoly(1/ε) time. Hence, we have found
a 0.92-approximate solution for (G, k) in polynomial time. J

4 Minimum k-Vertex Cover

4.1 A Faster FPT-AS
We now present our result on Weighted Min k-VC, starting with the faster FPT-AS (The-
orem 4). It will be more convenient for us to work with a multicolored version of the problem,
which we call Multicolored Min k-VC. In Multicolored Min k-VC, we are given G, k as
before and also a coloring χ : VG → [k]. A set S ⊆ VG is said to be colorful if every vertex
in S is assigned a different color, i.e., |χ(S)| = |S|. The goal of Multicolored Min k-VC
is to find a colorful S ⊆ VG of size k that maximizes EG(S). We overload the notation
OPTMin k-VC and also use it to denote the optimum of Multicolored Min k-VC; that is, we
let OPTMin k-VC(G, k, χ) = min

S∈(VG
k ),|χ(S)|=k EG(S).

The main theorem of this section is the following FPT-AS for Multicolored Min k-VC.

I Theorem 8. For any ε > 0, there exists an (1+ε)-approximation algorithm for Multicolored
Min k-VC that runs in time O(1/ε)O(k) · poly(n).

We note here that the above lemma immediately gives an FPT-AS for (uncolored)
Weight Min k-VC with similar running time (i.e. Theorem 4) via standard color-coding
technique [3]. Specifically, they show how to construct a family F of k-perfect hash functions
from VG → {1, . . . , k} in 2O(k) · poly(n) time. By running the FPT-AS from Theorem 8
on (G, k, χ) for all χ ∈ F and take the best solution among the outputs, we arrive at the
FPT-AS for (uncolored) Weight Min k-VC.

We now proceed to discuss the intuition behind Theorem 8. The algorithm consists of
two parts: subgraph generation and dynamic programming. Roughly speaking, the subgraph
generation part will, for each set of colors C ⊆ [k], generate connected colorful subsets

find such a solution, the running time required is npoly(n/k) (see Theorem 4.1 in that paper).
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T ⊆ VG whose color is C and record the minimum EG(T ) in the table cell DP[C]. The
second part of the algorithm then uses a standard dynamic programming to find a colorful
k-vertex S with minimum EG(S).

For the purpose of exposition, let us assume for the moment that our graph is unweighted.
The subgraph generation part is the heart of the algorithm, and, if not implemented in
a careful manner, will be too slow. For instance, the trivial implementation of this is as
a recursive function that maintains a set of included vertices Sincluded and a set of active
vertices Sactive. This function then picks any vertex u ∈ Sactive and tries to select at most
k neighbors of u to add into Sincluded and Sactive; the function then remove u from Sactive
and recursively call itself on this new sets. (Note that in this step it also makes sure that
the set Sincluded remains colorful; otherwise, the recursive call is not made.) The function
stops when Sactive is empty and update DP[C] to be the minimum between the current value
and EG(Sincluded). As the reader may have already noticed, while this algorithm records
(exactly) the correct answer into the table, it is very slow. In particular, if say we run this
on a complete graph, then it will generates nΘ(k) subgraphs.

The algorithm of Gupta, Lee and Li [30, 29], while not stated in this exact form, can
be viewed as a more careful implementation of this approach. In particular, they use the
observation of Marx [46] (that was also outlined outline in Section 1.1): for unweighted graphs,
if the optimal solution has any vertex with degree at least

(
k
2
)
/ε, simply picking the k vertices

with minimum degrees would already be an (1 + ε)-approximate solution. In other words,
one may assume that the graph has degree bounded by

(
k
2
)
/ε = O(k2/ε). When this is the

case, the algorithm from the previous paragraph in fact runs in O(k/ε)O(k) ·poly(n) time; the
reason is that the number of choices to be made when adding a vertex is only O(k2/ε) instead
of n as before. Hence, the running time becomes O(k2/ε)k · poly(n) = (k/ε)O(k) · poly(n).

To obtain further speed up, we observe that, if at most ε/2 fraction of neighbors of a
vertex u lies in the optimal solution, then ignoring all of them completely while branching
would change the number of covered edges by factor of no more than ε. (This is shown
formally in the proof below.) In other words, instead of trying all subsets of at most k
neighbors of u. We may only try subsets with at least dε/2 (and at most k) neighbors of u
where d is the degree of u. The point here is that, while there are still exp(d) branches, we
are adding at least dε/2 vertices. Hence, the “branching factor per vertex added” is small:
namely, for j > dε/2, the “branching factor per vertex added” is only

(
d
j

)1/j
6 ed/j 6 O(1/ε).

This indeed gives the running time of O(1/ε)O(k) · poly(n). (Note that such branching may
result in a connected component being separated; however, when this is the case, the number
of edges between the generated parts must be small anyway.)

Let us now shift our discussion to the edge-weighted graph case. Once again, as we will
show formally in the proof, throwing away the edges adjacent to u with total weight at
most (ε/2) · w-deg(u) only affects the solution value by no more than ε factor. However,
this observation alone is not enough; specifically, unlike the unweighted case, this does not
guarantee that many vertices must be selected. As an example, if there is a vertex v where
w{u,v} = 0.5·w-deg(u), then even the set {v} should be consider when we branch. Nevertheless,
it is once again possible to show that, we can select a collection T of representative subsets
such that, for any set S ⊆ VG (the true optimal set), we can arrive in a subset in T by
throwing away vertices whose edges to u are of total weight at most (ε/2) ·w-deg(u). In other
words, it is “safe” to just consider branching with subsets in T instead of all subsets. Again,
the collection T will satisfy the property that the “branching factor per vertex added” is
small; that is, for any j, the number of j-element subsets that belong to T is at most O(1/ε)j .
The existence and efficient construction of such T is stated below in a more general form.
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Note that, in the context of subgraph generation algorithm, one should think of δ = ε/2,
` = n− 1 (all vertices except u itself) and P = w-deg(u)− w{u}.

I Lemma 9. Let a1, . . . , a` > 0 be any non-negative real numbers, let δ > 0 be any positive
real number, and let P =

∑
i∈[`] ai. Then, there exists a collection T of subsets of [`] such

that
(i) For all j ∈ [`], we have

∣∣∣T ∩ ([`]j )∣∣∣ 6 O(1/δ)j, and,
(ii) For any S ⊆ [`], there exists T ∈ T such that T ⊆ S and

∑
i∈(S\T ) ai 6 δ · P .

Moreover, for any j ∈ [`], T ∩
( [`]
6j

)
can be computed in O(1/δ)O(j)`O(1) time.

Proof. Let π : [`]→ [`] be any permutation such that aπ(1) > · · · > aπ(`). For each j ∈ [`],
we construct T ∩

([`]
j

)
by taking all j-element subsets of {π(1), . . . , π(min{j · d1/δe, `})}. We

have∣∣∣∣T ∩ ([`]
j

)∣∣∣∣ 6 (j · d1/δej

)
6

(
ej · d1/δe

j

)j
6 O(1/δ)j .

Moreover, it is clear that the set T ∩
([`]
j

)
can be generated in time polynomial in the size of

the set and `, which is O(1/δ)O(j)`O(1) as desired.
Finally, we will prove ii. Consider any subset S ⊆ [`] and suppose that its elements

are π(i1), . . . , π(im). We pick the set T as follows: let t be the largest index such that
it 6 t · d1/δe and let T = {π(i1), . . . , π(it)}. Since it 6 t · d1/δe, T is a t-element subset
from {π(1), . . . , π(min{t · d1/δe, `}) and hence T belongs to T . To prove ii, observe that, by
definition of t, we have ig > g · d1/δe for all g > t. This means that

∑
i∈(S\T )

ai =
m∑

g=t+1
aπ(g) 6

m∑
g=t+1

 1
d1/δe

g·d1/δe∑
i=(g−1)·d1/δe+1

ai

 6
1
d1/δe

∑
i∈[`]

ai 6 δ · P,

which concludes the proof. J

With the above lemma ready, we proceed to the proof of Theorem 8.

Proof of Theorem 8. The proof is based on the ideas outlined above. For simplicity, we
will describe the algorithm that computes an approximation for OPTMin k-VC(G, k, χ) rather
than a subset S ⊆ VG, i.e., it will output a number between OPTMin k-VC(G, k, χ) and
(1 + ε) · OPTMin k-VC(G, k, χ). It is not hard to see that the algorithm can be turned to
provide a desired set as well.

As stated above, the algorithm consists of two parts: the subgraph generation part, and
the dynamic programming part. The subgraph generation algorithm, which is shown below
as Algorithm 1, is very much the same as stated earlier: it takes as an input the sets Sactive
and Sincluded (in addition to (G, k, χ)). If there is no more active vertex in Sactive, then it
just updates the table DP to reflect EG(Sincluded). Otherwise, it pick a vertex u and try
to branch on every representative T from T from Lemma 9 where the {ai}’s are defined as
av = w{u,v} for all v 6= {u} and δ = ε/2.

The dynamic programming (main algorithm) proceeds in a rather straightforward manner:
after initializing the table, the main algorithm calls the subgraph generation subroutine
starting with each vertex. Then, it uses dynamic programming to updates the table DP
to reflect the fact that the answer may consist of many connected components. Finally, it
outputs DP[{1, . . . , k}]. The pseudo-code for this is given below as Algorithm 2.
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Algorithm 1
1: procedure SubgraphGen(G, k, χ, Sactive, Sincluded)
2: if Sactive = ∅ then
3: DP[χ(Sincluded)]← min{DP[χ(Sincluded)], EG(Sincluded)}
4: else
5: u← Any element of Sactive
6: Sactive ← Sactive \ {u}
7: T ← Subsets generated by Lemma 9 for av = w{u,v} for all v 6= u and δ = ε/2.
8: for T ⊆ T ∩

(
VG\{u}

6k

)
do

9: if T ∩ Sincluded = ∅ and Sincluded ∪ T is colorful then
10: SubgraphGen(G, k, χ, Sactive ∪ T, Sincluded ∪ T )
11: end procedure

Algorithm 2
1: procedure Min_k-VC(G, k, χ)
2: for C ⊆ [k] do
3: DP[C]←∞
4: for u ∈ VG do
5: SubgraphGen(G, k, χ, {u}, {u})
6: for C ⊆ [k] in increasing order of |C| do
7: for C ′ ⊆ C do
8: DP[C]← min{DP[C],DP[C ′] + DP[C \ C ′]}
9: return DP[[k]]
10: end procedure

Running Time Analysis. We will show that the running time of the algorithm is indeed
O(1/ε)O(k). It is obvious that the dynamic programming step takes only 2O(k) · poly(n) time,
and it is not hard to see that each call to SubgraphGen, without taking into account the
time spent in the recursed calls (Step 10), takes only O(1/ε)O(k) · poly(n) time (because
the bottleneck is the generation of T ∩

(
VG\{u}

6k

)
and this takes only O(1/ε)O(k) · poly(n)

time as guaranteed by Lemma 9). Thus, it suffices for us to show that, for each u ∈ V ,
SubgraphGen(G, k, χ, {u}, {u}) only generates O(1/ε)O(k) · poly(n) leaves in the recursion
tree. (By leaves, we refer to calls SubgraphGen(G, k, χ, Sactive, Sincluded) where Sactive = ∅.
Note that, if SubgraphGen(G, k, χ, ∅, Sincluded) is called multiple times for the same
Sincluded, we count each call separately.) The proof is a formalization of the “branching
factor per vertex added” idea outlined before the proof.

In fact, we will prove a more general statement: for all colorful subsets Sactive ⊆ Sincluded,
SubgraphGen(G, k, χ, Sactive, Sincluded) results in at most (C/ε)2k−|Sincluded|−|Sincluded\Sactive|

leaves for some C > 0. In particular, let C ′ > 0 be a constant such that Lemma 9 gives the
bound |T ∩

([`]
j

)
| 6 (C ′/δ)j ; we will prove the statement for C = 2C ′ + 2.

We prove by induction on decreasing order of |Sincluded| and |Sincluded \ Sactive| respect-
ively. In the base case where |Sincluded| = k, the statement is obviously true, since the
condition in Line 9 ensures that no more subroutine is executed. In another base case where
|Sincluded \ Sactive| = |Sincluded|, the statement is also obviously true since, in this case, we
simply have Sactive = ∅.
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For the inductive step, suppose that, for some 0 6 i < k and 1 6 j 6 i, the statement holds
for all colorful subsets Sactive ⊆ Sincludedsuch that |Sincluded| > i, or, |Sincluded| = i and
|Sactive| < j. Now, consider any colorful subsets Sactive ⊆ Sincluded such that |Sincluded| = i

and |Sactive| = j. We will argue below that SubgraphGen(G, k, χ, Sactive, Sincluded) results
in at most (C ′/ε)2k−i−(i−j) leaves.

To do so, first observe that (1) in every recursive call, |Sincluded \Sactive| increases by one
(namely u becomes inactive) and (2) for every 0 6 t 6 k− i, the number of recursive calls for
which |Sincluded| increases by t is at most |T ∩

(
VG\{u}

t

)
| 6 (C ′/ε)t. As a result, by the induct-

ive hypothesis, the number of leaves generated by SubgraphGen(G, k, χ, Sactive, Sincluded)
is at most

k−i∑
t=0

(C ′/ε)t · (C/ε)2k−(i+t)−(i−j+1) = (C/ε)2k−i−(i−j+1) ·

(
k−i∑
t=0

(C ′/C)t
)

(Since C > 2C ′) 6 (C/ε)2k−i−(i−j+1) · 2

(Since C > 2) 6 (C/ε)2k−i−(i−j)

as desired.
In conclusion, for all colorful Sactive ⊆ Sincluded, SubgraphGen(G, k, χ, Sactive,

Sincluded) generates at most (C/ε)2k−|Sincluded|−|Sincluded\Sactive| leaves. As argued above, this
implies that the running time of the algorithm is at most O(1/ε)O(k) · poly(n).

Approximation Guarantee Analysis. We will now show that the output lies between
OPTMin k-VC(G, k, χ) and (1 + ε) · OPTMin k-VC(G, k, χ). For convenience, let us define
DP∗ to be the value of table DP filled by SubgraphGen calls; that is, this is the table
before Line 6 in Algorithm 2. Observe the following relationship between DP and DP∗:

DP[C] = min
Partition P of C

∑
C′∈P

DP∗[C ′]. (5)

It is now rather simple to see that the output is at least OPTMin k-VC(G, k, χ). To do so,
observe that, for any C ⊆ [k], DP∗[C] is equal EG(SC) for some colorful SC ⊆ VG with
χ(SC) = C. This, together with (5), implies that the output must be equal to

∑
C′∈P EG(SC′)

for some partition P of [k] and colorful SC′ ’s such that χ(SC′) = C ′. Observe that this
value is at least EG

(⋃
C′∈P SC′

)
, which is at least OPTMin k-VC(G, k, χ) since

⋃
C′∈P SC′ is

a colorful set of size k.
Next, we will show that the output (i.e. DP[[k]]) is at most (1 + ε) ·OPTMin k-VC(G, k, χ).

The following proposition is at the heart of this proof:

I Proposition 10. For any non-empty colorful subset S ⊆ VG, there exists a non-empty
Srep ⊆ S such that

DP∗[χ(Srep)] 6 EG(Srep) and EG(Srep, S \ Srep) 6 δ · w-deg(Srep).

Proof of Proposition 10. Let v be any vertex in S. Let us consider the call Subgraph-
Gen(G, χ, k, {v}, {v}). Consider traversing the following single branch in every execu-
tion of Step 10: pick T ∈ T such that T ⊆ (S \ Sincluded) and

∑
i∈(S\Sincluded)\T w{u,i} 6

δ ·
∑
i∈VG

w{u,i} = δ ·w-degG(u). (We remark that such T is guaranteed to exist by Lemma 9;
if there are more than one such T ’s, just choose an arbitrary one.) Suppose that always
choosing such branch ends in a call SubgraphGen(G, k, χ, ∅, Srep). We will show that Srep

satisfies the desired properties.
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First of all, observe that the fact we always choose T ⊆ S ensures that Srep ⊆ S

and that, since SubgraphGen(G, k, χ, ∅, Srep) is executed, we indeed have DP[χ(Srep)] 6
EG(Srep). Hence, we are only left to argue that EG(Srep, S \ Srep) 6 δ · w-deg(Srep). To
see that this is the case, observe that the second property of the T ’s chosen implies that∑
i∈S\Srep w{u,i} 6 δ · w-deg(u). Summing this inequality over all u ∈ Srep immediately

yields EG(Srep, S \ Srep) 6 δ · w-deg(Srep). J

With Proposition 10 ready, we can now prove that DP[[k]] 6 (1+ε)·OPTMin k-VC(G, k, χ).
Let SOPT ⊆ VG denote an optimal solution to the problem, i.e., SOPT is a colorful k-vertex
subset such that EG(SOPT) = OPTMin k-VC(G, k, χ). Let S1 = SOPT. For i = 1, . . . , if
Si 6= ∅, we apply Proposition 10 to find a non-empty subset Srep

i ⊆ Si such that

DP∗[χ(Srep
i )] 6 EG(Srep

i ) and EG(Srep
i , Si+1) 6 δ · w-deg(Srep

i ). (6)

where Si+1 = Si \ Srep
i .

Observe here that {Srep
i }i>1 is a partition of SOPT. Thus, from (5) and (6), we have

DP[[k]]
(5)
6
∑
i>1

DP∗[χ(Srep
i )]

(6)
6
∑
i>1

EG(Srep
i ). (7)

On the other hand, observe that EG(Si) = EG(Srep
i ) +EG(Si+1)−EG(Srep

i , Si+1). Thus,
we have

EG(SOPT) =
∑
i>1

(EG(Si)− EG(Si+1))

=
∑
i>1

EG(Srep
i )−

∑
i>1

EG(Srep
i , Si+1)

(6)
>
∑
i>1

EG(Srep
i )− δ ·

∑
i>1

w-deg(Srep
i )

=
∑
i>1

EG(Srep
i )− δ · w-deg(SOPT). (8)

Finally, from (7), (8) and w-deg(SOPT) 6 2 · EG(SOPT), we have DP[[k]] 6 (1 + 2δ) ·
EG(SOPT) = (1 + ε) ·OPTMin k-VC(G, k, χ) which concludes the proof. J

4.2 Non-Existence of Polynomial Size Approximate Kernel
The above FPT-AS and the equivalence between existence of FPT approximation algorithm
and approximate kernel [43] immediately implies that there exists an (1− ε)-approximate
kernel for Weighted Min k-VC. However, this naive approach results in an approximate kernel
of size O(1/ε)O(k). A natural question is whether there exists a polynomial-size approximate
kernel for Weighted Min k-VC (similar to Weighted Max k-VC). In this section, we show
that the answer to this question is likely a negative, assuming a variant of the Small Set
Expansion Conjecture.

Our proof follows the framework of Lokshtanov et al. [43]. Let us recall that an equivalence
relation R over strings on a finite alphabet Σ is said to be polynomial if (i) whether x ∼ y can
be checked in poly(|x|+ |y|) time and (ii) for every n ∈ N, Σn has at most poly(n) equivalence
classes. The framework of Lokshtanov et al. uses the notion of α-gap cross composition, as
defined below. (This is based on the cross composition in the exact settings from [12].)
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I Definition 11 (α-gap cross composition [43]). Let L be a language and Π be a parameterized
minimization problem. We say that L α-gap cross composes into Π (for α 6 1), if there
is a polynomial equivalence relation R and an algorithm which, given strings x1, · · · , xt
from the same equivalence class of R, computes an instance (y, k) of Π and r ∈ R, in time
poly(

∑t
i=1 |xi|) such that the following holds:

(i) (Completeness) OPTΠ(y, k) 6 r if xi ∈ L for some 1 6 i 6 t,
(ii) (Soundness) OPTΠ(y, k) > rα if xi /∈ L for all i ∈ [t], and,
(iii) k is bounded by a polynomial in log t+ max16i6t |xi|.

A parameterized optimization problem is said to be nice if, given a solution to the
problem, its cost can be computed in polynomial time. (Clearly, Weighted Min k-VC is
nice.) The main tool from [43] is that any problem that α-gap cross composes to a nice
parameterized optimization problem Π must be in coNP/poly if Π has α-approximate kernel8.
In other words, if an NP-hard language α-gap cross composes to Π, then Π does not have
α-approximate kernel unless NP ⊆ coNP/poly.

I Lemma 12 ([43]). Let L be a language and Π be a nice parameterized optimization problem.
If L α-gap cross composes to Π, and Π has a polynomial size α-approximate kernel, then
L ∈ coNP/poly.

As stated earlier, our lower bound will be based on the Small Set Expansion Hypothesis
(SSEH) [50]. To state the hypothesis, let us first recall the definition of edge expansion; for a
graph G, the edge expansion of a subset of vertices S ⊆ VG is defined as Φ(S) := EG(S,VG\S)

w-deg(S) .
Roughly speaking, SSEH, which was proposed in [50], states that it is NP-hard to determine
whether (completeness) there is a subset of a specified size with very small edge expansion or
(soundness) every subset of a specified size has edge expansion close to one. This is formalized
below.

I Definition 13 (SSE(δ, η)). Given an unweighted regular graph G, distinguish between:
(Completeness) There exists S ⊆ VG of size δ|VG| such that Φ(S) 6 η.
(Soundness) For every S ⊆ VG of size δ|VG|, Φ(S) > 1− η.

I Conjecture 14 (Small Set Expansion Hypothesis [50]). For every η > 0, there exists
δ = δ(η) > 0 such that SSE(δ, η) is NP-hard.

Before we state the variant of SSEH that we will use, let us demonstrate why we need
to strengthen the hypothesis. To do so, let us consider the (2 − ε)-factor hardness of
approximation of Min k-VC as proved in [25], which our construction will be based on. The
reduction takes in an input G to SSE(δ, η) and simply just outputs (G, k) where k = δ|VG|.
The point is that, in a d-regular graph, a set S covers exactly d(1 + Φ(S))|S|/2 edges. This
means that, in the completeness case, there is a set S of size k that covers only d(1 + η)k/2
edges, whereas, in the soundness case, any set S of size k covers at least d(2− η)k/2 edges.
By selecting η sufficiently small, the ratio between the two cases is at least (2 − ε), and
hence [25] arrives at their (2− ε)-factor inapproximability result.

Now, our cross composition is similar to this, except that we need to be to handle
multiple instances at once. More specifically, given instance G1, . . . , Gt of SSE(δ, η) where
all G1, . . . , Gt are d-regular for some d and |VG1 | = · · · = |VGt

|, we want to produce an
instance (G∗, k) where G∗ is the disjoint union of G1, . . . , Gt and k = δ|V |. Once again, the

8 We note that the result of [43] works even with a weaker notion than α-approximate kernel called
α-approximate compression; see Definition 5.5 and Theorem 5.9 of [43] for more details.
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completeness case works exactly as before. The issue lies in the soundness case: even though
we know that every Si ⊆ VGi

of size k has expansion close to one, it is possible that there
exists Si ⊆ VGi

of size much smaller than k that has small expansion. For instance, it might
even be that G1, . . . , Gt each contains a connected component of size k/t. In this case, we
can take the union of these components and arrive at a set of size k that covers dk/2 edges,
which is even smaller than the completeness case! In other words, for the composition to
work, we want the soundness of SSEH to consider not only S’s of size k, but also S’s of size
at most k. With this in mind, we can formalize our strengthened hypothesis as follows.

I Definition 15 (Strong-SSE(δ, η)). Given an unweighted regular graph G, distinguish
between:

(Completeness) There exists S ⊆ VG of size δ|VG| such that Φ(S) 6 η.
(Soundness) For every S ⊆ VG of size at most δ|VG|, Φ(S) > 1− η.

I Conjecture 16 (Strong Small Set Expansion Hypothesis). For every η > 0, there exists
δ = δ(η) > 0 such that Strong-SSE(δ, η) is NP-hard.

We remark that it is known that a strengthening of SSEH where the soundness case
is required for all S of size in [βδ|V |, δ|V |] for any β > 0 is known to be equivalent to the
original SSEH. (See Appendix A.2 of the full version of [51] for a simple proof.) This is closely
related to what we want above, except that we need this to holds even for |S| = o(|V |). To
the best of our knowledge, the Strong SSEH as stated above is not known to be equivalent
to the original SSEH.

Proof of Lemma 5. Let ε be any number that lies in (0, 1]. Let η be ε/2, and let δ = δ(η) > 0
be as guaranteed by Conjecture 14. We will show that Strong-SSE(δ, η) (2− ε)-gap cross
composes9 into Min k-VC, which together with Lemma 12 immediately implies the statement
in the lemma.

We define an equivalence relation R on instances of Strong-SSE(δ, η) by G ∼ G′ iff
|VG| = |VG′ | and w-deg(G) = w-deg(G′). It is obvious that R is polynomial. Given t

instances G1, . . . , Gt from the same equivalence class of R where n = |VG1 | = · · · = |VGt
|

and d = w-deg(G1) = · · · = w-deg(Gt), we create an instance (G∗, k) of Min k-VC by letting
G∗ be the (disjoint) union of G1, . . . , Gt, k = δn, and r = dδn(1 + η)/2. We next argue the
completeness and soundness of the composition.

Completeness. Suppose that, for some i ∈ [t], there exists S ⊆ VGi of size δn such
that ΦGi

(S) 6 η. Then, the number of edges covered by S (in both Gi and G∗) is
dδn(1 + Φ(S))/2 6 dδn(1 + η)/2. In other words, OPTMax k-VC(G∗, k) 6 r as desired.

Soundness. Suppose that, for all i ∈ [t] and S ⊆ VGi
of size at most δn, we have ΦGi

(S) >
(1 − η). Consider any set S∗ ⊆ VG∗ of size δn. Let Si denote S∗ ∩ VGi

. Observe that the
number of edges covered by S∗ is∑

i∈[t]

d|Si|(1 + ΦGi
(Si))/2 >

∑
i∈[t]

d|Si|(2− η)/2 = dδn(2− η)/2 > (2− ε)r,

9 Note that strictly speaking Strong-SSE(δ, η) is not a language, but rather a promise problem (cf. [27]).
Nevertheless, the notion of gap cross composes extends naturally to promise problems; the only changes
are that in the yes case xi ∈ L should be changed to xi ∈ LYES and in the no case xi /∈ L should
be changed to xi ∈ LNO. The result in Lemma 12 also holds for this case; for instance, see Lemma
5.11 and Theorem 5.12 of [43], where the gap cross composition also starts from a promise problem
(Gap-Longest-Path).
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where the first inequality comes from our assumption and the second comes from our choice
of η. Thus, we have OPTMax k-VC(G∗, k) > (2− ε)r as desired. J

We note here that the above proof produces G∗ that is unweighted. As a result, the lower
bound also applies for Unweighted Min k-VC.

5 Concluding Remarks

Let us make a few brief remarks regarding the tightness of running times of our algorithms.
The W[1]-hardness proofs of Max k-VC and Min k-VC in [28] also implies that, even in the
unweighted case, if we can approximate the problems to within (1− 1/n2) and (1 + 1/n2)
factors respectively, then we can solve the k-Clique problem with only polynomial overhead
in running time. This implies the following lower bounds:
1. Unless W[1] = FPT, there is no FPT-AS for Max k-VC and Min k-VC with running

time exp(f(k) · o(log(1/ε))) · poly(n) for any function f (because this would give an
FPT time algorithm for k-Clique when plugging in ε = 1/n2).

2. Unless k-Clique can be solved in g(k) · no(k) time for some function g, there is no
FPT-AS for Max k-VC and Min k-VC with running time O(1/ε)o(k) · poly(n).

For Max k-VC, the reduction that proves (1+δ)-factor NP-hardness of approximation [49]
is in fact a linear size reduction from the gap version of 3SAT. As a result, assuming
the Gap Exponential Time Hypothesis (Gap-ETH)10, there is no FPT-AS that runs in
time f(1/ε)o(k) · poly(n) for any function f . Under the weaker ETH, a lower bound of the
form f(1/ε)o(k/poly log k) · poly(n) for any f can be achieved via nearly linear size PCP [18].
(Note that we do not know any lower bound of this form for Min k-VC; in particular, it
is not known whether Min k-VC is NP-hard to approximate even for a factor of 1.0001.)

An interesting remaining open question is to close the gap between the (polynomial
time) approximation algorithms and hardness of approximation for Max k-VC. On the
algorithmic front, we note that Austrin et al. [6] further exploited the techniques developed by
Raghavendra and Tan [52] to achieve several improvements. Most importantly, they show that,
for Max 2SAT with cardinality constraint, if the cardinality constraint is x1 + · · ·+ xn = n/2
(i.e. k = n/2), then an 0.94-approximation can be achieved in polynomial time. (In particular,
the ratio here is the same as the ratio of the Lewin-Livnat-Zwick algorithm for Max 2SAT
without cardinality constraint [42]; see also [5, 53]. Note that this ratio is still different
from the hardness from [7].) This specific case is often referred to as Max Bisection 2SAT.
Unfortunately, the algorithm does not naturally11 extend to the case where k 6= n/2 and
hence it is unclear how to employ this algorithm for Max k-VC.

On the hardness of approximation front, we remark that the hardness that follows from [7]
holds even for the perfect completeness case. That is, even when there is a vertex cover of
size k, it is still hard to find k vertices that cover 0.944 fraction of the edges. (See Appendix
A of the full version [44].) Interestingly, there is an evidence that this perfect completeness
case is easier: Feige and Langberg [23] shows that their algorithm achieves 0.8-approximation
in this case, which is better than (0.75 + δ)-approximation that their algorithm yields in the

10Gap-ETH states that there is no 2o(n)-time algorithm that can distinguish between a fully satisfiable
3CNF formula and one which is not even 0.999-satisfiable [19, 45].

11 In particular, the rounding algorithm involves scaling the bias of the variables (see Section 6 of [6]). For
Max Bisection 2SAT, the sum of the bias is zero and hence scaling retains the sum. However, when the
sum is non-zero, scaling changes the sum and hence the rounding algorithm produces a subset of size
not equal to k.
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general case. In fact, we can even get 0.94-approximation in this case as follows. First, we
follow the kernelization for Vertex Cover [16] based on the Nemhauser-Trotter theorem [48]:
on input graph (G, k), this gives a partition V0, V1/2, V1 such that there exists a vertex cover
S of size k such that V1 ⊆ S ⊆ V1/2 ∪ V1. Moreover, the Nemhauser-Trotter theorem also
ensures that |V1/2| = 2 · (k − |V1|). This means that we can restrict ourselves to the graph
induced by V1/2 and applies the aforementioned Max Bisection 2SAT from [6]. This indeed
gives us a 0.94-approximation as desired. These suggest that it might be that the perfect
completeness case is easier to approximate; thus, it would be interesting to see whether there
is any way to construct harder instances with imperfect completeness.
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